Research Article

Improving the Landslide Susceptibility Prediction Accuracy by Using Genetic Algorithm Optimized Machine Learning Approach

Table 6

Summary of results of binary logit regression analysis.

ItemsRegression coefficientStandard errorzWald χ2OROR 95% CI

Slope height0.0020.0011.4482.0980.1481.0020.999 ∼ 1.005
Slope angle−0.0450.017−2.6076.7970.0090.9560.924 ∼ 0.989
Unit weight0.2020.0533.84914.8140.0011.2241.104 ∼ 1.357
Cohesion0.0020.0050.5290.2790.5971.0020.994 ∼ 1.011
Friction angle0.0860.0233.80614.4870.0011.0901.042 ∼ 1.139
Pore water pressure0.3700.8330.4440.1970.6571.4480.283 ∼ 7.406
Intercept distance−5.7381.033−5.55730.8770.0010.0030.001 ∼ 0.024

Dependent variable: stability. McFadden R2: 0.225. Cox and Snell R2: 0.259. Nagelkerke R2: 0.352.