Research Article
Improving the Landslide Susceptibility Prediction Accuracy by Using Genetic Algorithm Optimized Machine Learning Approach
Table 6
Summary of results of binary logit regression analysis.
| Items | Regression coefficient | Standard error | z | Wald χ2 | | OR | OR 95% CI |
| Slope height | 0.002 | 0.001 | 1.448 | 2.098 | 0.148 | 1.002 | 0.999 ∼ 1.005 | Slope angle | −0.045 | 0.017 | −2.607 | 6.797 | 0.009 | 0.956 | 0.924 ∼ 0.989 | Unit weight | 0.202 | 0.053 | 3.849 | 14.814 | 0.001 | 1.224 | 1.104 ∼ 1.357 | Cohesion | 0.002 | 0.005 | 0.529 | 0.279 | 0.597 | 1.002 | 0.994 ∼ 1.011 | Friction angle | 0.086 | 0.023 | 3.806 | 14.487 | 0.001 | 1.090 | 1.042 ∼ 1.139 | Pore water pressure | 0.370 | 0.833 | 0.444 | 0.197 | 0.657 | 1.448 | 0.283 ∼ 7.406 | Intercept distance | −5.738 | 1.033 | −5.557 | 30.877 | 0.001 | 0.003 | 0.001 ∼ 0.024 |
|
|
Dependent variable: stability. McFadden R2: 0.225. Cox and Snell R2: 0.259. Nagelkerke R2: 0.352.
|