Research Article

Predicting Potential Risk: Cerebral Stroke via Regret Minimization

Table 2

Comparison of method accuracy across different feature scales.

Feature numberMethod name
Chi-square test (%)F test (%)Mutual information (%)RMFS (%)

1(acPayStyle, 70.83)(dfHypertension, 69.73)(dfHypertension, 69.73)(age_4, 69.73)
2(acPayStyle, acJob, 69.73)(dfHypertension, dfSportsLack, 69.85)(dfHypertension, acPayStyle, 71.75)(age_4, dfGlycuresis, 71.38)
3(acPayStyle, acJob, age_4, 72.18)(dfHypertension, dfSportsLack, acPayStyle, 71.26)(dfHypertension, acPayStyle, acJob, 71.45)(age_4, dfGlycuresis, acPayStyle, 72.92)
5(acPayStyle, acJob, age_4, age_6, glu_high, 73.59)(dfHypertension, dfSportsLack, acPayStyle, acJob, ldlc_low, 70.10)(dfHypertension, acPayStyle, acJob, dfSportsLack, lsDrink, 70.10)(age_4, dfGlycuresis, acPayStyle, age_5, ldlc_low, 74.69)
1073.9074.5174.6376.16
2075.0076.0474.1476.35
3075.8675.7476.3577.27
4076.1676.3575.5577.02
5075.9876.4176.5976.72
6076.9676.9676.3577.08

The bold values indicate the minimum values in each column. The smaller the value is, the better the value is.