Research Article
Node Importance Estimation with Multiview Contrastive Representation Learning
Table 3
Experimental results on real-world datasets.
| Method | FB15K | TMDB5K | IMDB | NDCG @100 | SPEARMAN | HR @100 | NDCG @100 | SPEARMAN | HR @100 | NDCG @100 | SPEARMAN | HR @100 |
| PR | 0.8395 0.009 | 0.3505 0.018 | 0.1340 0.015 | 0.8378 0.016 | 0.6092 0.012 | 0.4140 0.064 | 0.8485 0.032 | 0.1829 0.003 | 0.3720 0.017 | PPR | 0.8407 0.009 | 0.3656 0.022 | 0.1360 0.019 | 0.8594 0.007 | 0.7248 0.013 | 0.4220 0.060 | 0.8638 0.029 | 0.3979 0.004 | 0.4060 0.019 | LR | 0.8921 0.011 | 0.6097 0.017 | 0.2160 0.042 | 0.8443 0.015 | 0.6871 0.011 | 0.4300 0.034 | 0.8972 0.003 | 0.5838 0.003 | 0.4540 0.024 | RF | 0.9136 0.010 | 0.6441 0.009 | 0.2220 0.048 | 0.8617 0.014 | 0.6993 0.016 | 0.4680 0.028 | 0.9068 0.006 | 0.6112 0.004 | 0.4380 0.018 | GCN | 0.9408 0.007 | 0.7179 0.013 | 0.4240 0.051 | 0.8999 0.008 | 0.7736 0.011 | 0.5240 0.029 | 0.9031 0.009 | 0.7135 0.006 | 0.3240 0.035 | GAT | 0.9357 0.014 | 0.6898 0.047 | 0.4060 0.055 | 0.9017 0.010 | 0.7728 0.008 | 0.5360 0.031 | 0.9186 0.008 | 0.6942 0.007 | 0.4780 0.028 | GENI∗ | 0.9301 0.005 | 0.7385 0.012 | 0.4260 0.092 | 0.9018 0.006 | 0.7898 0.009 | 0.5460 0.024 | 0.9302 0.005 | 0.7312 0.005 | 0.5080 0.034 | GENI | 0.9415 0.006 | 0.7797 0.018 | 0.4220 0.058 | 0.8979 0.008 | 0.7721 0.007 | 0.5340 0.021 | 0.9394 0.005 | 0.7351 0.005 | 0.5420 0.026 | RGTN | 0.9501 ± 0.007 | 0.8156 ± 0.010 | 0.4880 ± 0.064 | 0.9114 ± 0.009 | 0.7946 ± 0.010 | 0.5580 ± 0.036 | 0.9585 ± 0.004 | 0.7643 ± 0.003 | 0.5660 ± 0.038 | HIVEN | 0.9436 0.006 | 0.7673 0.015 | 0.4280 0.052 | 0.9045 0.008 | 0.7852 0.008 | 0.5480 0.026 | 0.9388 0.006 | 0.7475 0.006 | 0.5340 0.036 | MCRL | 0.9626 0.013 | 0.8229 0.014 | 0.5100 0.069 | 0.9195 0.020 | 0.7961 0.013 | 0.5680 0.041 | 0.9624 0.008 | 0.7713 0.007 | 0.5720 0.044 |
|
|
The bolded results are the best, and the italic results are the second best.
|