Research Article

Node Importance Estimation with Multiview Contrastive Representation Learning

Table 3

Experimental results on real-world datasets.

MethodFB15KTMDB5KIMDB
NDCG @100SPEARMANHR @100NDCG @100SPEARMANHR @100NDCG @100SPEARMANHR @100

PR0.8395 0.0090.3505 0.0180.1340 0.0150.8378 0.0160.6092 0.0120.4140 0.0640.8485 0.0320.1829 0.0030.3720 0.017
PPR0.8407 0.0090.3656 0.0220.1360 0.0190.8594 0.0070.7248 0.0130.4220 0.0600.8638 0.0290.3979 0.0040.4060 0.019
LR0.8921 0.0110.6097 0.0170.2160 0.0420.8443 0.0150.6871 0.0110.4300 0.0340.8972 0.0030.5838 0.0030.4540 0.024
RF0.9136 0.0100.6441 0.0090.2220 0.0480.8617 0.0140.6993 0.0160.4680 0.0280.9068 0.0060.6112 0.0040.4380 0.018
GCN0.9408 0.0070.7179 0.0130.4240 0.0510.8999 0.0080.7736 0.0110.5240 0.0290.9031 0.0090.7135 0.0060.3240 0.035
GAT0.9357 0.0140.6898 0.0470.4060 0.0550.9017 0.0100.7728 0.0080.5360 0.0310.9186 0.0080.6942 0.0070.4780 0.028
GENI0.9301 0.0050.7385 0.0120.4260 0.0920.9018 0.0060.7898 0.0090.5460 0.0240.9302 0.0050.7312 0.0050.5080 0.034
GENI0.9415 0.0060.7797 0.0180.4220 0.0580.8979 0.0080.7721 0.0070.5340 0.0210.9394 0.0050.7351 0.0050.5420 0.026
RGTN0.9501±0.0070.8156±0.0100.4880±0.0640.9114±0.0090.7946±0.0100.5580±0.0360.9585±0.0040.7643±0.0030.5660±0.038
HIVEN0.9436 0.0060.7673 0.0150.4280 0.0520.9045 0.0080.7852 0.0080.5480 0.0260.9388 0.0060.7475 0.0060.5340 0.036
MCRL0.9626 0.0130.8229 0.0140.5100 0.0690.9195 0.0200.7961 0.0130.5680 0.0410.9624 0.0080.7713 0.0070.5720 0.044

The bolded results are the best, and the italic results are the second best.