Research Article

ALFPN: Adaptive Learning Feature Pyramid Network for Small Object Detection

Table 5

Comparison with the state-of-the-art methods on TT-100K dataset.

No.MethodDatasetModuleAP

1Faster R-CNNTT-100KFPN [9]43.327.248.156.1
2PAFPN [48]40.622.74454.6
3HRFPN [49]43.427.647.556.3
4AugFPN [26]45.629.349.258.4
5Cascade R-CNNTT-100KFPN [9]44.728.348.458.6
6PAFPN [48]43.325.345.155.2
7HRFPN [49]45.826.547.354.5
8AugFPN [26]46.330.148.459.6
9Sparse R-CNNTT-100KFPN [9]57.338.562.169.8
10PAFPN [48]57.938.165.268.6
11HRFPN [49]55.637.360.463.1
12AugFPN [26]58.739.861.970.3
13RetinanetTT-100KFPN [9]34.822.139.243.1
14PAFPN [48]35.223.239.143.8
15HRFPN [49]34.322.338.142.9
16AugFPN [26]36.123.439.543.2
18Retinanet (ours)TT-100KALFPN37.425.140.344.9
19Cascade R-CNN (ours)ALFPN48.631.949.862.5
20Faster R-CNN (ours)ALFPN48.732.350.461.4
21Sparse R-CNN (ours)ALFPN60.542.663.072.6

The symbol means the experimental results of our proposed module.