Research Article
ALFPN: Adaptive Learning Feature Pyramid Network for Small Object Detection
Table 5
Comparison with the state-of-the-art methods on TT-100K dataset.
| No. | Method | Dataset | Module | AP | | | |
| 1 | Faster R-CNN | TT-100K | FPN [9] | 43.3 | 27.2 | 48.1 | 56.1 | 2 | PAFPN [48] | 40.6 | 22.7 | 44 | 54.6 | 3 | HRFPN [49] | 43.4 | 27.6 | 47.5 | 56.3 | 4 | AugFPN [26] | 45.6 | 29.3 | 49.2 | 58.4 | 5 | Cascade R-CNN | TT-100K | FPN [9] | 44.7 | 28.3 | 48.4 | 58.6 | 6 | PAFPN [48] | 43.3 | 25.3 | 45.1 | 55.2 | 7 | HRFPN [49] | 45.8 | 26.5 | 47.3 | 54.5 | 8 | AugFPN [26] | 46.3 | 30.1 | 48.4 | 59.6 | 9 | Sparse R-CNN | TT-100K | FPN [9] | 57.3 | 38.5 | 62.1 | 69.8 | 10 | PAFPN [48] | 57.9 | 38.1 | 65.2 | 68.6 | 11 | HRFPN [49] | 55.6 | 37.3 | 60.4 | 63.1 | 12 | AugFPN [26] | 58.7 | 39.8 | 61.9 | 70.3 | 13 | Retinanet | TT-100K | FPN [9] | 34.8 | 22.1 | 39.2 | 43.1 | 14 | PAFPN [48] | 35.2 | 23.2 | 39.1 | 43.8 | 15 | HRFPN [49] | 34.3 | 22.3 | 38.1 | 42.9 | 16 | AugFPN [26] | 36.1 | 23.4 | 39.5 | 43.2 | 18 | Retinanet (ours) | TT-100K | ALFPN | 37.4 | 25.1 | 40.3 | 44.9 | 19 | Cascade R-CNN (ours) | ALFPN | 48.6 | 31.9 | 49.8 | 62.5 | 20 | Faster R-CNN (ours) | ALFPN | 48.7 | 32.3 | 50.4 | 61.4 | 21 | Sparse R-CNN (ours) | ALFPN | 60.5 | 42.6 | 63.0 | 72.6 |
|
|
The symbol means the experimental results of our proposed module. |