Research Article
A Hybrid Deep Learning Prediction Method of Remaining Useful Life for Rolling Bearings Using Multiscale Stacking Deep Residual Shrinkage Network
Table 7
Comparison of evaluation metric results.
| Testing bearing | MSDRSN | BiLSTM | MSCNN-FC | MSE | MAE | R2 | MSE | MAE | R2 | MSE | MAE | R2 |
| 1-3 | 2 db | 0.005 | 0.042 | 0.954 | 0.102 | 0.243 | 0.418 | 0.047 | 0.186 | 0.537 | 4 db | 0.003 | 0.028 | 0.975 | 0.078 | 0.141 | 0.568 | 0.050 | 0.126 | 0.503 | 6 db | 0.004 | 0.054 | 0.956 | 0.115 | 0.548 | 0.432 | 0.053 | 0.122 | 0.477 | 8 db | 0.004 | 0.036 | 0.962 | 0.256 | 0.106 | 0.566 | 0.035 | 0.068 | 0.659 |
| 2-3 | 2 db | 0.004 | 0.012 | 0.625 | 0.015 | 0.275 | 0.578 | 0.007 | 0.720 | 0.551 | 4 db | 0.005 | 0.016 | 0.503 | 0.032 | 0.349 | 0.498 | 0.008 | 0.135 | 0.256 | 6 db | 0.003 | 0.014 | 0.653 | 0.048 | 0.217 | 0.651 | 0.008 | 0.057 | 0.146 | 8 db | 0.003 | 0.014 | 0.657 | 0.041 | 0.136 | 0.557 | 0.009 | 0.060 | 0.093 |
| 3-3 | 2 db | 0.003 | 0.026 | 0.971 | 0.033 | 0.159 | 0.667 | 0.015 | 0.076 | 0.851 | 4 db | 0.004 | 0.054 | 0.964 | 0.006 | 0.047 | 0.941 | 0.011 | 0.063 | 0.892 | 6 db | 0.002 | 0.043 | 0.976 | 0.046 | 0.189 | 0.537 | 0.025 | 0.144 | 0.744 | 8 db | 0.004 | 0.054 | 0.963 | 0.024 | 0.102 | 0.759 | 0.018 | 0.077 | 0.811 |
|
|
The bold values in the table are the values of the proposed method, which is convenient and clearer to compare with the values of other methods.
|