Research Article

An Edge-Assisted Computing and Mask Attention Based Network for Lung Region Segmentation

Table 3

Results of EAM-Net and Res-UNet using different encoder backbones on the JSRT, Shenzhen, and Montgomery datasets.

MethodsJSRTShenzhenMontgomery
PA (%)Dice (%)JA (%)PA (%)Dice (%)JA (%)PA (%)Dice (%)JA (%)

Res-UNet1898.4097.3794.8897.6995.3791.1798.5697.0195.03
EAM-Net1898.7197.8895.8898.0095.9292.0799.0998.1196.30
Res-UNet3498.4397.4294.9897.7795.4291.3198.5897.3495.39
EAM-Net3498.8397.9996.0098.0496.0092.1899.1598.2296.51
Res-UNet5098.5997.6995.4997.8595.5391.4098.6597.4195.60
EAM-Net5098.9698.1196.1598.2096.1392.2799.1698.2396.52

Bold values represent the the highest performance for each performance metric.