Research Article
An Edge-Assisted Computing and Mask Attention Based Network for Lung Region Segmentation
Table 3
Results of EAM-Net and Res-UNet using different encoder backbones on the JSRT, Shenzhen, and Montgomery datasets.
| Methods | JSRT | Shenzhen | Montgomery | PA (%) | Dice (%) | JA (%) | PA (%) | Dice (%) | JA (%) | PA (%) | Dice (%) | JA (%) |
| Res-UNet18 | 98.40 | 97.37 | 94.88 | 97.69 | 95.37 | 91.17 | 98.56 | 97.01 | 95.03 | EAM-Net18 | 98.71 | 97.88 | 95.88 | 98.00 | 95.92 | 92.07 | 99.09 | 98.11 | 96.30 | Res-UNet34 | 98.43 | 97.42 | 94.98 | 97.77 | 95.42 | 91.31 | 98.58 | 97.34 | 95.39 | EAM-Net34 | 98.83 | 97.99 | 96.00 | 98.04 | 96.00 | 92.18 | 99.15 | 98.22 | 96.51 | Res-UNet50 | 98.59 | 97.69 | 95.49 | 97.85 | 95.53 | 91.40 | 98.65 | 97.41 | 95.60 | EAM-Net50 | 98.96 | 98.11 | 96.15 | 98.20 | 96.13 | 92.27 | 99.16 | 98.23 | 96.52 |
|
|
Bold values represent the the highest performance for each performance metric.
|