Research Article

Hybrid Techniques for Diagnosing Endoscopy Images for Early Detection of Gastrointestinal Disease Based on Fusion Features

Table 2

Results of CNN + SVM systems for diagnosing endoscopy images of the gastrointestinal disease dataset.

SystemDisease typesAccuracy (%)Sensitivity (%)Precision (%)Specificity (%)AUC (%)

VGG-16 + SVMDyed_lifted_polyps92.5093.2696.9010098.52
Dyed_resection_margins96.5096.3295.5099.3599.12
Esophagitis95.5095.3493.6099.4299.50
Normal_cecum95.0094.8495.0098.7898.80
Normal_pylorus97.0097.2896.5099.1099.15
Normal_z_line98.5097.9297.5010099.66
Polyps95.5095.1096.0098.9598.95
Ulcerative_colitis94.0093.8593.5099.2298.45
Average ratio95.6095.4995.5699.3599.02

DenseNet-121 + SVMDyed_lifted_polyps9797.1297.5099.5998.17
Dyed_resection_margins9998.8497.1099.8799.81
Esophagitis96.596.3596.5099.1198.25
Normal_cecum95.594.9197.4010097.99
Normal_pylorus96.595.6897.0099.6998.69
Normal_z_line97.597.2697.0010099.10
Polyps96.0096.0996.5098.7897.84
Ulcerative_colitis93.5094.4192.6098.8798.74
Average ratio96.4096.3396.4599.4998.57