Research Article
A Modified Gray Wolf Optimizer-Based Negative Selection Algorithm for Network Anomaly Detection
Table 4
Classification accuracy for different datasets with different methods.
| Dataset | Algorithm | Training time (s) | Classification accuracy (%) |
| NSL-KDD | Full dataset | 724 | 77.75 | Chi2 | 249 | 76.40 | ANOVA-F | 153 | 73.18 | Mutual info | 233 | 77.68 | Random forest | 216 | 74.61 | RFE | 240 | 75.63 | CBFS | 186 | 78.48 | DP-SUMIC | 140 | 79.12 |
| CICIDS-2017 | Full dataset | 123 | 96.61 | Chi2 | 47 | 94.67 | ANOVA-F | 18.6 | 90.82 | Mutual info | 69.8 | 97.00 | Random forest | 76.9 | 96.87 | RFE | 77.1 | 96.50 | CBFS | 42.1 | 96.50 | DP-SUMIC | 38.5 | 97.83 |
| UNSW-NB15 | Full dataset | 1250 | 89.60 | Chi2 | 701 | 89.24 | ANOVA-F | 199 | 85.59 | Mutual info | 486 | 90.10 | Random forest | 332 | 88.69 | RFE | 271 | 89.48 | CBFS | 256 | 90.15 | DP-SUMIC | 208 | 91.06 |
|
|