Research Article
A Modified Gray Wolf Optimizer-Based Negative Selection Algorithm for Network Anomaly Detection
| Dataset | Algorithm | Recall (%) | Accuracy (%) | Precision (%) | F1 (%) |
| NSL-KDD | NB | 92.30 | 92.60 | 98.80 | 95.44 | KNN | 91.30 | 92.60 | 99.00 | 94.01 | SVM | 77.20 | 81.10 | 99.20 | 86.30 | DT | 91.20 | 92.80 | 99.00 | 94.94 | RF | 91.00 | 92.70 | 99.00 | 94.83 | DNN | 91.30 | 92.50 | 98.90 | 94.90 | CNN | 95.73 | 95.54 | 95.36 | 95.54 | LSTM | 90.79 | 94.26 | 99.05 | 94.74 | RNSA | 95.31 | 80.97 | 70.86 | 81.29 | HD-NSA | 95.38 | 96.49 | 96.21 | 95.79 | MDGWO-NSA-(without DP-SUMIC) | 94.76 | 95.31 | 98.97 | 96.82 | MDGWO-NSA | 99.23 | 97.61 | 96.68 | 97.94 |
| UNSW-NB15 | NB | 65.00 | 74.35 | 96.04 | 77.53 | KNN | 96.00 | 93.71 | 94.00 | 94.99 | SVM | 83.71 | 74.80 | 70.53 | 76.56 | DT | 98.00 | 94.20 | 93.00 | 95.43 | RF | 97.00 | 95.43 | 96.00 | 96.50 | DNN | 67.80 | 75.03 | 90.30 | 77.45 | CNN | 92.28 | 82.13 | 96.16 | 93.68 | LSTM | 92.76 | 82.40 | 96.37 | 94.53 | RNSA | 80.25 | 93.85 | 95.71 | 94.77 | HD-NSA | 95.91 | 93.76 | 96.42 | 96.16 | MDGWO-NSA-(without DP-SUMIC) | 93.57 | 94.46 | 95.18 | 94.37 | MDGWO-NSA | 98.46 | 95.76 | 94.57 | 96.48 |
| CICIDS-2017 | NB | 80.00 | 82.00 | 82.00 | 80.99 | KNN | 94.56 | 92.33 | 94.55 | 94.55 | SVM | 84.00 | 84.00 | 81.50 | 82.73 | DT | 95.00 | 92.70 | 95.00 | 95.00 | RF | 94.00 | 92.60 | 94.70 | 94.35 | DNN | 95.03 | 92.97 | 95.03 | 95.03 | CNN | 86.30 | 99.50 | 80.80 | 83.46 | LSTM | 92.95 | 96.83 | 98.31 | 95.41 | RNSA | 87.29 | 95.33 | 82.57 | 84.86 | HD-NSA | 92.79 | 97.34 | 97.11 | 94.90 | MDGWO-NSA- (without DP-SUMIC) | 92.53 | 94.38 | 96.75 | 94.59 | MDGWO-NSA | 95.73 | 98.60 | 99.24 | 97.45 |
|
|