Research Article

A Modified Gray Wolf Optimizer-Based Negative Selection Algorithm for Network Anomaly Detection

Table 5

Summary of results.

DatasetAlgorithmRecall (%)Accuracy (%)Precision (%)F1 (%)

NSL-KDDNB92.3092.6098.8095.44
KNN91.3092.6099.0094.01
SVM77.2081.1099.2086.30
DT91.2092.8099.0094.94
RF91.0092.7099.0094.83
DNN91.3092.5098.9094.90
CNN95.7395.5495.3695.54
LSTM90.7994.2699.0594.74
RNSA95.3180.9770.8681.29
HD-NSA95.3896.4996.2195.79
MDGWO-NSA-(without DP-SUMIC)94.7695.3198.9796.82
MDGWO-NSA99.2397.6196.6897.94

UNSW-NB15NB65.0074.3596.0477.53
KNN96.0093.7194.0094.99
SVM83.7174.8070.5376.56
DT98.0094.2093.0095.43
RF97.0095.4396.0096.50
DNN67.8075.0390.3077.45
CNN92.2882.1396.1693.68
LSTM92.7682.4096.3794.53
RNSA80.2593.8595.7194.77
HD-NSA95.9193.7696.4296.16
MDGWO-NSA-(without DP-SUMIC)93.5794.4695.1894.37
MDGWO-NSA98.4695.7694.5796.48

CICIDS-2017NB80.0082.0082.0080.99
KNN94.5692.3394.5594.55
SVM84.0084.0081.5082.73
DT95.0092.7095.0095.00
RF94.0092.6094.7094.35
DNN95.0392.9795.0395.03
CNN86.3099.5080.8083.46
LSTM92.9596.8398.3195.41
RNSA87.2995.3382.5784.86
HD-NSA92.7997.3497.1194.90
MDGWO-NSA- (without DP-SUMIC)92.5394.3896.7594.59
MDGWO-NSA95.7398.6099.2497.45