Research Article
Semi-Supervised Predictive Clustering Trees for (Hierarchical) Multi-Label Classification
Table 1
The proposed algorithm for learning of semi-supervised predictive clustering trees.
| | Procedure SSL-PCT | | Input: A dataset , a parameter | | Output: A predictive clustering tree | | (1): | | (2): if then | | (3): for eachdo | | (4): = SSL-PCT(, ) | | (5): return | | (6): else | | (7): return |
| | Procedure OptimizeParamW | | Input: A dataset ; a set of values , ; a number of folds k | | Output: A value | | (1): for eachdo | | (2): | | (3): return |
| | Procedure | | Input: A dataset , a parameter | | Output: The best test (), its heuristic score (), and the partition () it induces on the dataset (E) | | (1): | | (2): for each possible test do | | (3): partition induced by on | | (4): | | (5): ifthen | | (6): | | (7): return |
| | Procedure CrossValidate | | Input: A dataset , , a number of folds k | | Output: An accuracy measure | | (1): = partition into k folds | | (2): for eachdo | | (3): = SSL-PCT | | (4): = evaluate | | (5): return |
|
|