Research Article
Medical Image Description Based on Multimodal Auxiliary Signals and Transformer
Table 1
Performance of different methods on the IU X-ray and COV-CTR datasets.
| Datasets | Methods | BLEU1 | BLEU2 | BLEU3 | BLEU4 | METEOR | ROUGE_L | CIDEr |
| IU-X-ray | Transformer | 0.422 | 0.264 | 0.177 | 0.120 | 0.164 | 0.338 | 0.421 | CoAtt | 0.455 | 0.288 | 0.205 | 0.154 | — | 0.369 | 0.277 | HRGR-Agent | 0.438 | 0.298 | 0.208 | 0.151 | — | 0.322 | 0.343 | PPKED | 0.483 | 0.315 | 0.224 | 0.168 | 0.190 | 0.376 | 0.351 | KERP | 0.482 | 0.325 | 0.226 | 0.162 | 0.187 | 0.339 | 0.280 | M2Transformer | 0.463 | 0.318 | 0.214 | 0.155 | 0.192 | 0.335 | — | ASGMD | 0.489 | 0.326 | 0.232 | 0.173 | 0.206 | 0.397 | — | R2Gen (base) | 0.470 | 0.304 | 0.219 | 0.165 | 0.187 | 0.371 | 0.398 | MDAK (our) | 0.480 | 0.328 | 0.231 | 0.172 | 0.201 | 0.369 | 0.424 | MDAKF (our) | 0.494 | 0.318 | 0.229 | 0.174 | 0.194 | 0.389 | 0.371 |
| COV-CTR | CoAtt | 0.709 | 0.645 | 0.603 | 0.552 | — | 0.748 | — | SAT | 0.697 | 0.621 | 0.568 | 0.515 | — | 0.723 | — | ASGK | 0.712 | 0.659 | 0.611 | 0.570 | — | 0.746 | — | AdaAtt | 0.676 | 0.633 | 0.596 | 0.514 | — | 0.726 | — | R2Gen | 0.725 | 0.641 | 0.580 | 0.528 | 0.399 | 0.677 | 1.358 | MDAK (our) | 0.723 | 0.652 | 0.586 | 0.545 | 0.403 | 0.676 | 1.452 | MDAKF (our) | 0.726 | 0.651 | 0.583 | 0.539 | 0.401 | 0.683 | 1.354 |
|
|
The bold values indicate that the model performance of the algorithm is optimal in a certain type of dataset.
|