Research Article
A Proposed Technique Using Machine Learning for the Prediction of Diabetes Disease through a Mobile App
Table 3
Metrics for the performance of 10 ML algorithms using the SMOTE.
| Ser. | Classifier | Accuracy (%) | Precision | Recall | F1 score |
| 1 | Logistic regression | 77.0 | 0.63 | 0.70 | 0.66 | 2 | Random forest | 75.0 | 0.60 | 0.66 | 0.63 | 3 | KNN | 64.0 | 0.49 | 0.73 | 0.59 | 4 | Decision tree | 72.0 | 0.79 | 0.77 | 0.78 | 5 | Bagging | 75.0 | 0.81 | 0.81 | 0.81 | 6 | AdaBoost | 73.0 | 0.80 | 0.77 | 0.78 | 7 | XGBoost | 83.1 | 0.70 | 0.84 | 0.76 | 8 | Voting | 75.0 | 0.83 | 0.76 | 0.79 | 9 | SVM | 77.0 | 0.87 | 0.77 | 0.82 | 10 | Naive Bayes | 81.2 | 0.73 | 0.71 | 0.72 |
|
|