Research Article

Optimal Gasoline Price Predictions: Leveraging the ANFIS Regression Model

Table 9

Summarizes the quantitative assessment of prediction models for gasoline orders utilizing an ensemble approach [40].

Regression modelsR-squaredRMSEAccuracy
Training setsTest setsTraining setsTest setsTraining sets (%)Test sets (%)

Linear0.78620.78580.26140.432888.6788.65
AdaBoost0.81170.65310.24520.550790.1080.82
Extra trees0.76320.61580.27530.579687.3678.48
Random forest0.83820.55110.22740.626591.5574.23
XGBoost0.98230.69690.07500.514899.1183.48