Research Article
A Triplet Multimodel Transfer Learning Network for Speech Disorder Screening of Parkinson’s Disease
Table 6
Performance of deep models on the IPVS dataset.
| Vowel | Vowel | Vowel | Methods | Precision (%) | Recall (%) | F1 score (%) | Acc (%) | Methods | Precision (%) | Recall (%) | F1 score (%) | Acc (%) | Methods | Precision (%) | Recall (%) | F1 score (%) | Acc (%) |
| BiLSTM | 99.24 | 99.94 | 99.59 | 99.60 | BiLSTM | 99.39 | 99.83 | 99.61 | 99.47 | BiLSTM | 99.41 | 99.68 | 99.55 | 99.50 | LSTM | 99.36 | 99.94 | 99.65 | 99.68 | LSTM | 99.39 | 100.00 | 99.69 | 99.58 | LSTM | 99.39 | 99.76 | 99.57 | 99.52 | BiLSTM (Attn) | 99.28 | 99.89 | 99.59 | 99.60 | BiLSTM (Attn) | 99.63 | 99.93 | 99.78 | 99.70 | BiLSTM (Attn) | 99.24 | 99.58 | 99.41 | 99.35 | HMM | 96.34 | 96.30 | 96.32 | 96.50 | HMM | 97.63 | 95.56 | 96.58 | 95.37 | HMM | 96.94 | 93.42 | 95.14 | 94.70 | CNN | 98.82 | 99.64 | 99.23 | 99.26 | CNN | 99.01 | 99.76 | 99.38 | 99.17 | CNN | 98.68 | 99.59 | 99.13 | 99.02 |
| Vowel | Vowel | TmmNet | Methods | Precision (%) | Recall (%) | F1 score (%) | Acc (%) | Methods | Precision (%) | Recall (%) | F1 score (%) | Acc (%) | Methods | Precision (%) | Recall (%) | F1 score (%) | Acc (%) |
| BiLSTM | 99.15 | 99.89 | 99.52 | 99.42 | BiLSTM | 98.91 | 99.73 | 99.32 | 99.22 | Vowel | 99.89 | 99.89 | 99.89 | 99.90 | LSTM | 99.23 | 99.89 | 99.56 | 99.48 | LSTM | 99.21 | 99.73 | 99.47 | 99.40 | Vowel | 99.86 | 99.83 | 99.84 | 99.79 | BiLSTM (Attn) | 98.69 | 99.74 | 99.21 | 99.06 | BiLSTM (Attn) | 99.11 | 99.89 | 99.50 | 99.43 | Vowel | 99.72 | 99.61 | 99.66 | 99.63 | CNN | 99.11 | 99.50 | 99.30 | 99.15 | CNN | 98.70 | 99.68 | 99.19 | 99.07 | Vowel | 99.95 | 99.85 | 99.90 | 99.87 | HMM | 97.77 | 96.23 | 96.99 | 96.48 | HMM | 97.63 | 97.11 | 97.37 | 97.00 | Vowel | 99.89 | 99.94 | 99.92 | 99.91 |
|
|
The bold values in Table 6 represents the highest results among all the compared methods.
|