Research Article
Semisupervised Medical Image Segmentation through Prototype-Based Mutual Consistency Learning
Table 2
Quantitative comparison between our method and other semisupervised methods on CVC-ClinicDB under 10% and 20% labeled data.
| Method | Labeled/unlabeled | DSC (%) | JI (%) | SE (%) | AC (%) | 95HD (mm) | ASD (mm) |
| Fully supervised | 490/0 | 84.16 | 76.00 | 85.23 | 96.83 | 29.76 | 8.84 | Supervised-only | 49/0 | 61.01 | 50.72 | 66.96 | 92.68 | 80.68 | 28.56 | MT [5] | 49/441 | 62.36 | 52.38 | 66.97 | 93.08 | 77.20 | 26.43 | DAN [10] | 49/441 | 64.11 | 53.49 | 69.05 | 93.01 | 73.83 | 23.84 | EM [49] | 49/441 | 62.44 | 51.47 | 67.92 | 92.70 | 81.96 | 28.08 | UAMT [8] | 49/441 | 64.10 | 52.83 | 70.52 | 93.05 | 72.67 | 26.07 | ICT [50] | 49/441 | 63.35 | 53.33 | 68.38 | 92.79 | 68.38 | 23.27 | PMCL (ours) | 49/441 | 69.00 | 58.50 | 74.86 | 93.55 | 66.68 | 23.08 | Supervised-only | 98/392 | 72.33 | 61.44 | 75.65 | 94.48 | 60.12 | 19.23 | MT [5] | 98/392 | 73.04 | 63.33 | 76.74 | 94.59 | 48.86 | 13.11 | DAN [10] | 98/392 | 74.10 | 63.59 | 76.98 | 94.87 | 55.19 | 17.55 | EM [49] | 98/392 | 73.94 | 63.98 | 75.93 | 94.77 | 55.52 | 14.83 | UAMT [8] | 98/392 | 72.67 | 62.52 | 78.84 | 94.59 | 53.36 | 15.16 | ICT [50] | 98/392 | 74.85 | 64.87 | 76.84 | 94.91 | 50.35 | 14.53 | PMCL (ours) | 98/392 | 75.64 | 65.61 | 81.09 | 94.76 | 48.15 | 14.58 |
|
|
The bold values suggest the best performance compared to other state-of-the-art methods.
|