Research Article

Semisupervised Medical Image Segmentation through Prototype-Based Mutual Consistency Learning

Table 2

Quantitative comparison between our method and other semisupervised methods on CVC-ClinicDB under 10% and 20% labeled data.

MethodLabeled/unlabeledDSC (%)JI (%)SE (%)AC (%)95HD (mm)ASD (mm)

Fully supervised490/084.1676.0085.2396.8329.768.84
Supervised-only49/061.0150.7266.9692.6880.6828.56
MT [5]49/44162.3652.3866.9793.0877.2026.43
DAN [10]49/44164.1153.4969.0593.0173.8323.84
EM [49]49/44162.4451.4767.9292.7081.9628.08
UAMT [8]49/44164.1052.8370.5293.0572.6726.07
ICT [50]49/44163.3553.3368.3892.7968.3823.27
PMCL (ours)49/44169.0058.5074.8693.5566.6823.08
Supervised-only98/39272.3361.4475.6594.4860.1219.23
MT [5]98/39273.0463.3376.7494.5948.8613.11
DAN [10]98/39274.1063.5976.9894.8755.1917.55
EM [49]98/39273.9463.9875.9394.7755.5214.83
UAMT [8]98/39272.6762.5278.8494.5953.3615.16
ICT [50]98/39274.8564.8776.8494.9150.3514.53
PMCL (ours)98/39275.6465.6181.0994.7648.1514.58

The bold values suggest the best performance compared to other state-of-the-art methods.