Research Article

Semisupervised Medical Image Segmentation through Prototype-Based Mutual Consistency Learning

Table 3

Quantitative comparison between our method and other semisupervised methods on CVC-ColonDB under 10% and 20% labeled data.

MethodLabeled/unlabeledDSC (%)JI (%)SE (%)AC (%)95HD (mm)ASD (mm)

Fully supervised304/081.0574.1680.4198.7820.575.10
Supervised-only30/036.9228.2638.3194.68150.0976.87
MT [5]30/27442.5633.7443.8593.99156.5177.51
DAN [10]30/27444.0435.1144.2395.48133.4569.00
EM [49]30/27443.3934.6642.4295.60124.8162.38
UAMT [8]30/27443.4534.8442.5795.43156.1082.26
ICT [50]30/27444.7736.7045.6394.76135.3569.11
PMCL (ours)30/27451.1442.8150.2995.82103.8942.62
Supervised-only60/24462.0953.8558.5597.3997.7244.42
MT [5]60/24465.6556.8767.7997.4299.5048.61
DAN [10]60/24466.1458.0266.6597.6691.3645.87
EM [49]60/24465.2956.7467.1997.37112.4445.24
UAMT [8]60/24464.8255.8164.2797.77115.4446.78
ICT [50]60/24465.9657.7465.6697.7193.7547.81
PMCL (ours)60/24467.4259.9768.8097.9179.3938.87

The bold values suggest the best performance compared to other state-of-the-art methods.