Research Article

Semisupervised Medical Image Segmentation through Prototype-Based Mutual Consistency Learning

Table 4

Quantitative comparison between proposed PMCL and other semisupervised methods on Kvasir-SEG under 10% and 20% labeled data.

MethodLabeled/unlabeledDSC (%)JI (%)SE (%)AC (%)95HD (mm)ASD (mm)

Fully supervised800/081.7973.1684.6295.1377.6023.53
Supervised-only80/073.0462.3280.3292.39117.2346.83
MT [5]80/72074.0963.3182.3392.90115.4841.87
DAN [10]80/72075.2965.1481.3392.88106.6539.26
EM [49]80/72074.7364.3883.7592.69121.1242.55
UAMT [8]80/72074.6664.3281.6192.68112.1838.61
ICT [50]80/72074.5864.4980.8393.02100.0337.46
PMCL (ours)80/72076.0266.4081.5393.5691.0330.96
Supervised-only160/64077.9469.2683.1294.0994.9832.04
MT [5]160/64078.1469.5277.2994.4077.6521.14
DAN [10]160/64078.3870.0478.7994.4881.6420.31
EM [49]160/64078.5969.4783.2394.2891.3431.94
UAMT [8]160/64078.4269.9680.3094.5678.8523.26
ICT [50]160/64078.7870.5578.9094.4870.3319.71
PMCL (ours)160/64079.9870.9284.2494.6397.8331.01

The bold values suggest the best performance compared to other state-of-the-art methods.