Research Article
Semisupervised Medical Image Segmentation through Prototype-Based Mutual Consistency Learning
Table 4
Quantitative comparison between proposed PMCL and other semisupervised methods on Kvasir-SEG under 10% and 20% labeled data.
| Method | Labeled/unlabeled | DSC (%) | JI (%) | SE (%) | AC (%) | 95HD (mm) | ASD (mm) |
| Fully supervised | 800/0 | 81.79 | 73.16 | 84.62 | 95.13 | 77.60 | 23.53 | Supervised-only | 80/0 | 73.04 | 62.32 | 80.32 | 92.39 | 117.23 | 46.83 | MT [5] | 80/720 | 74.09 | 63.31 | 82.33 | 92.90 | 115.48 | 41.87 | DAN [10] | 80/720 | 75.29 | 65.14 | 81.33 | 92.88 | 106.65 | 39.26 | EM [49] | 80/720 | 74.73 | 64.38 | 83.75 | 92.69 | 121.12 | 42.55 | UAMT [8] | 80/720 | 74.66 | 64.32 | 81.61 | 92.68 | 112.18 | 38.61 | ICT [50] | 80/720 | 74.58 | 64.49 | 80.83 | 93.02 | 100.03 | 37.46 | PMCL (ours) | 80/720 | 76.02 | 66.40 | 81.53 | 93.56 | 91.03 | 30.96 | Supervised-only | 160/640 | 77.94 | 69.26 | 83.12 | 94.09 | 94.98 | 32.04 | MT [5] | 160/640 | 78.14 | 69.52 | 77.29 | 94.40 | 77.65 | 21.14 | DAN [10] | 160/640 | 78.38 | 70.04 | 78.79 | 94.48 | 81.64 | 20.31 | EM [49] | 160/640 | 78.59 | 69.47 | 83.23 | 94.28 | 91.34 | 31.94 | UAMT [8] | 160/640 | 78.42 | 69.96 | 80.30 | 94.56 | 78.85 | 23.26 | ICT [50] | 160/640 | 78.78 | 70.55 | 78.90 | 94.48 | 70.33 | 19.71 | PMCL (ours) | 160/640 | 79.98 | 70.92 | 84.24 | 94.63 | 97.83 | 31.01 |
|
|
The bold values suggest the best performance compared to other state-of-the-art methods.
|