Research Article

Semisupervised Vector Quantization in Visual SLAM Using HGCN

Table 3

Comparing HGCN-FABMAP and FABMAP2 methods for LCD.

Train datasetTest datasetHGCN-FABMAPFABMAP2
Acc (%)Rec (%)Acc (%)Rec (%)

St. LuciaNew College50.0710050.02100
31141716050056.0086.0056.882.00
77.3068.6277.6063.00

TUM sequence-11Lip6indoor50.3010050.34100
3924492718954.9090.5054.9090.50
59.5581.5052.5981.20

St. LuciaSt. Lucia75.0072.0050.80100
31141723551054.0595.8550.4090.00
59.5581.50

New CollegeNewer College90.2080.8571.0080.30
16050019400097.4072.3479.0072.34
99.0067.7580.0267.55