Abstract

Cain and Nashed generalized to locally convex spaces a well known fixed point theorem of Krasnoselskii for a sum of contraction and compact mappings in Banach spaces. The class of asymptotically nonexpansive mappings includes properly the class of nonexpansive mappings as well as the class of contraction mappings. In this paper, we prove by using the same method some results concerning the existence of fixed points for a sum of nonexpansive and continuous mappings and also a sum of asymptotically nonexpansive and continuous mappings in locally convex spaces. These results extend a result of Cain and Nashed.