International Journal of Mathematics and Mathematical Sciences / 2008 / Article / Tab 3 / Research Article
Discrete Dynamics by Different Concepts of Majorization Table 3 The evaluation of the different concepts of perm-majorization.
In the first column the time steps are given. One sees the relation
×
of the perm-majorization in the second column and the weak
perm-submajorization in the third column. Incomparableness are
denoted by
𝑘
=
𝑡
[
𝑠
]
/
5
𝑠
.
ℎ
(
𝑘
)
𝑅
ℎ
(
𝑘
+
1
)
ℎ
(
2
𝑘
)
𝑅
ℎ
(
2
𝑘
+
2
)
𝑓
(
𝑘
)
𝑅
𝑓
(
𝑘
+
1
)
𝑓
(
2
𝑘
)
𝑅
𝑓
(
2
𝑘
+
2
)
p
e
r
m
≻
0
p
e
r
m
≻
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
p
e
r
m
≻
1
p
e
r
m
≻
𝑤
p
e
r
m
≻
2
p
e
r
m
≻
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
3
p
e
r
m
≻
𝑤
×
4
p
e
r
m
≻
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
5
×
×
6
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
7
p
e
r
m
≻
𝑤
×
8
p
e
r
m
≻
×
p
e
r
m
≻
𝑤
×
9
p
e
r
m
≻
𝑤
×
10
p
e
r
m
≻
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
11
p
e
r
m
≻
𝑤
×
12
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
13
p
e
r
m
≻
𝑤
×
14
×
×
p
e
r
m
≻
𝑤
×
15
p
e
r
m
≻
𝑤
×
16
×
×
×
×
17
×
×
18
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
19
×
×
20
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
21
p
e
r
m
≻
𝑤
×
22
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
23
×
×
24
p
e
r
m
≻
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
25
p
e
r
m
≻
𝑤
×
26
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
27
p
e
r
m
≻
𝑤
×
28
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
29
×
×
30
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
31
p
e
r
m
≻
𝑤
×
32
p
e
r
m
≻
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
33
p
e
r
m
≻
𝑤
×
34
×
×
p
e
r
m
≻
𝑤
×
35
p
e
r
m
≻
𝑤
×
36
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
37
p
e
r
m
≻
𝑤
×
38
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
39
p
e
r
m
≻
𝑤
×
40
p
e
r
m
≻
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
41
p
e
r
m
≻
𝑤
×
42
×
×
p
e
r
m
≻
𝑤
×
43
p
e
r
m
≻
𝑤
×
44
×
×
p
e
r
m
≻
𝑤
×
45
p
e
r
m
≻
𝑤
×
46
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
47
p
e
r
m
≻
𝑤
×
48
×
p
e
r
m
≻
𝑤
p
e
r
m
≻
𝑤
×
49
p
e
r
m
≻
𝑤
p
e
r
m
≻
50
×
1
𝐼
(
ℎ
)
=
l
o
g
2
𝑛
𝑛
𝑖
=
1
𝑝
𝑖
,
(
4
.
2
)