Abstract

We prove the existence and uniqueness of solutions for a family of discrete boundary value problems by using discrete's Wirtinger inequality. The boundary condition is a combination of Dirichlet and Neumann boundary conditions.

1. Introduction

In this paper, we study the following nonlinear discrete boundary value problem:[],π‘’βˆ’Ξ”(π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1)))=𝑓(π‘˜),π‘˜βˆˆβ„€1,𝑇(0)=Δ𝑒(𝑇)=0,(1.1) where 𝑇β‰₯2 is a positive integer and Δ𝑒(π‘˜)=𝑒(π‘˜+1)βˆ’π‘’(π‘˜) is the forward difference operator. Throughout this paper, we denote by β„€[π‘Ž,𝑏] the discrete interval {π‘Ž,π‘Ž+1,…,𝑏}, where π‘Ž and 𝑏 are integers and π‘Ž<𝑏.

We consider in (1.1) two different boundary conditions: a Dirichlet boundary condition (𝑒(0)=0) and a Neumann boundary condition (Δ𝑒(𝑇)=0). In the literature, the boundary condition considered in this paper is called a mixed boundary condition.

We also consider the function space []π‘Š={π‘£βˆΆβ„€0,𝑇+1βŸΆβ„;suchthat𝑣(0)=Δ𝑣(𝑇)=0},(1.2) where π‘Š is a T-dimensional Hilbert space [1, 2] with the inner product (𝑒,𝑣)=π‘‡ξ“π‘˜=1𝑒(π‘˜)𝑣(π‘˜),βˆ€π‘’,π‘£βˆˆπ‘Š.(1.3) The associated norm is defined by‖𝑒‖=π‘‡ξ“π‘˜=1||||𝑒(π‘˜)2ξƒͺ1/2.(1.4) For the data 𝑓 and π‘Ž, we assume the following.(𝐻1)π‘“βˆΆβ„€[1,𝑇]→ℝ. (𝐻2)π‘Ž(π‘˜,β‹…)βˆΆβ„β†’β„forallπ‘˜βˆˆβ„€[0,𝑇] and their exists a mapping π΄βˆΆβ„€[0,𝑇]×ℝ→ℝ which satisfies π‘Ž(π‘˜,πœ‰)=(πœ•/πœ•πœ‰)𝐴(π‘˜,πœ‰), for all π‘˜βˆˆβ„€[0,𝑇] and 𝐴(π‘˜,0)=0, for all π‘˜βˆˆβ„€[0,𝑇].(𝐻3)(π‘Ž(π‘˜,πœ‰)βˆ’π‘Ž(π‘˜,πœ‚))β‹…(πœ‰βˆ’πœ‚)>0 for all π‘˜βˆˆβ„€[0,𝑇] and πœ‰,πœ‚βˆˆβ„ such that πœ‰β‰ πœ‚.(𝐻4)|πœ‰|𝑝(π‘˜)β‰€π‘Ž(π‘˜,πœ‰)πœ‰β‰€π‘(π‘˜)𝐴(π‘˜,πœ‰) for all π‘˜βˆˆβ„€[0,𝑇] and πœ‰βˆˆβ„.(𝐻5)π‘βˆΆβ„€[0,𝑇]β†’(1,+∞).

The theory of difference equations occupies now a central position in applicable analysis. We just refer to the recent results of Agarwal et al. [1], Yu and Guo [3], KonΓ© and Ouaro [4], Guiro et al. [5], Cai and Yu [6], Zhang and Liu [7], MihΔƒilescu et al. [8], Candito and Dβ€²Agui [9], Cabada et al. [10], Jiang and Zhou [11], and the references therein. In [7], the authors studied the following problem:Ξ”2[],𝑦(π‘˜βˆ’1)+πœ†π‘“(𝑦(π‘˜))=0,π‘˜βˆˆβ„€1,𝑇𝑦(0)=𝑦(𝑇+1)=0,(1.5) where πœ†>0 is a parameter, Ξ”2𝑦(π‘˜)=Ξ”(Δ𝑦(π‘˜)), π‘“βˆΆ[0,+∞)→ℝ a continuous function satisfying the condition 𝑓(0)=βˆ’π‘Ž<0,whereπ‘Žisapositiveconstant.(1.6)

The problem (1.5) is referred as the β€œsemipositone” problem in the literature, which was introduced by Castro and Shivaji [2]. Semipositone problems arise in bulking of mechanical systems, design of suspension bridges, chemical reactions, astrophysics, combustion, and management of natural resources.

The studies regarding problems like (1.1) or (1.5) can be placed at the interface of certain mathematical fields such as nonlinear partial differential equations and numerical analysis. On the other hand, they are strongly motivated by their applicability in mathematical physics as mentioned above.

In [11], Jiang and Zhou studied the following problem: Ξ”2[],𝑒(π‘˜βˆ’1)=𝑓(π‘˜,𝑒(π‘˜)),π‘˜βˆˆβ„€1,𝑇𝑒(0)=Δ𝑒(𝑇)=0,(1.7) where 𝑇 is a fixed positive integer, π‘“βˆΆβ„€[1,𝑇]×ℝ→ℝ is a continuous function. Jiang and Zhou proved an existence of nontrivial solutions for (1.7) by using strongly monotone operator principle and critical point theory.

In this paper, we consider the same boundary conditions as in [11] but the main operator is more general than the one in [11] and involves variable exponent.

Problem (1.1) is a discrete variant of the variable exponent anisotropic problem βˆ’π‘ξ“π‘–=1πœ•πœ•π‘₯π‘–π‘Žπ‘–ξ‚΅π‘₯,πœ•π‘’πœ•π‘₯𝑖=𝑓(π‘₯)inΞ©,𝑒=0onΞ“1πœ•π‘’πœ•π‘›=0onΞ“2,(1.8) where Ξ©βŠ‚β„π‘(𝑁β‰₯3) is a bounded domain with smooth boundary, Ξ“1βˆͺΞ“2=πœ•Ξ©, π‘“βˆˆπΏβˆž(Ξ©), 𝑝𝑖 continuous on Ξ© such that 1<𝑝𝑖(π‘₯)<𝑁 and βˆ‘π‘π‘–=1(1/π‘βˆ’π‘–)>1 for all π‘₯∈Ω and all π‘–βˆˆβ„€[1,𝑁], where π‘βˆ’π‘–βˆΆ=essinfπ‘₯βˆˆΞ©π‘π‘–(π‘₯).

The first equation in (1.8) was recently analyzed by KonΓ© et al. [12] and Ouaro [13] and generalized to a Radon measure data by KonΓ© et al. [14] for an homogeneous Dirichlet boundary condition (𝑒=0 on πœ•Ξ©). The study of (1.8) will be done in a forthcoming work. Problems like (1.8) have been intensively studied in the last decades since they can model various phenomena arising from the study of elastic mechanics (see [15, 16]), electrorheological fluids (see [15, 17–19]), and image restoration (see [20]). In [20], Chen et al. studied a functional with variable exponent 1≀𝑝(π‘₯)≀2 which provides a model for image denoising, enhancement, and restoration. Their paper created another interest for the study of problems with variable exponent.

Note that MihΔƒilescu et al. (see [21, 22]) were the first authors who studied anisotropic elliptic problems with variable exponent. In general, the interested reader can find more information about difference equations in [1–11, 23–25], more information about variable exponent in [12–22, 26].

Our goal in this paper is to use a minimization method in order to establish some existence results of solutions of (1.1). The idea of the proof is to transfer the problem of the existence of solutions for (1.1) into the problem of existence of a minimizer for some associated energy functional. This method was successfully used by Bonanno et al. [27] for the study of an eigenvalue nonhomogeneous Neumann problem, where, under an appropriate oscillating behavior of the nonlinear term, they proved the existence of a determined open interval of positive parameters for which the problem considered admits infinitely many weak solutions that strongly converges to zero, in an appropriate Orlicz-Sobolev space. Let us point out that, to our best knowledge, discrete problems like (1.1) involving anisotropic exponents have been discussed for the first time by MihΔƒilescu et al. (see [8]), in a second time by KonΓ© and Ouaro [4], and in a third time by Guiro et al. [5]. In [8], the authors proved by using critical point theory, existence of a continuous spectrum of eigenvalues for the problem ξ‚€||||βˆ’Ξ”Ξ”π‘’(π‘˜βˆ’1)𝑝(π‘˜βˆ’1)βˆ’2||||Δ𝑒(π‘˜βˆ’1)=πœ†π‘’(π‘˜)π‘ž(π‘˜)βˆ’2[],𝑒(π‘˜),π‘˜βˆˆβ„€1,𝑇𝑒(0)=𝑒(𝑇+1)=0,(1.9) where 𝑇β‰₯2 is a positive integer and the functions π‘βˆΆβ„€[0,𝑇]β†’[2,∞) and π‘žβˆΆβ„€[1,𝑇]β†’[2,∞) are bounded while πœ† is a positive constant.

In [4], KonΓ© and Ouaro proved, by using minimization method, existence and uniqueness of weak solutions for the following problem: [],π‘’βˆ’Ξ”(π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1)))=𝑓(π‘˜),π‘˜βˆˆβ„€1,𝑇(0)=𝑒(𝑇+1)=0,(1.10) where 𝑇β‰₯2 is a positive integer.

The function π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1)) which appears in the left-hand side of problem (1.1) is more general than the one which appears in (1.9). Indeed, as examples of functions which satisfy the assumptions (𝐻2)–(𝐻5), we can give the following. (i)𝐴(π‘˜,πœ‰)=(1/𝑝(π‘˜))|πœ‰|𝑝(π‘˜), where π‘Ž(π‘˜,πœ‰)=|πœ‰|𝑝(π‘˜)βˆ’2πœ‰, for all π‘˜βˆˆβ„€[0,𝑇] and πœ‰βˆˆβ„.(ii)𝐴(π‘˜,πœ‰)=1/𝑝(π‘˜)[(1+|πœ‰|2)𝑝(π‘˜)/2βˆ’1], where π‘Ž(π‘˜,πœ‰)=(1+|πœ‰|2)(𝑝(π‘˜)βˆ’2)/2πœ‰, for all π‘˜βˆˆβ„€[0,𝑇] and πœ‰βˆˆβ„.

In [5], Guiro et al. studied the following two-point boundary value problems ||||βˆ’Ξ”(π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1)))+𝑒(π‘˜)𝑝(π‘˜)[],𝑒(π‘˜)=𝑓(π‘˜),π‘˜βˆˆβ„€1,𝑇Δ𝑒(0)=Δ𝑒(𝑇)=0.(1.11)

The function π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1)) has the same properties as in [4], but the boundary conditions are different. For this reason, Guiro et al. defined a new norm in the Hilbert space considered in order to get, by using minimization methods, existence of a unique weak solution (which is also a classical solution since the Hilbert space associated is of finite dimension). Indeed, they used the following norm:‖𝑒‖=𝑇+1ξ“π‘˜=1||||Δ𝑒(π‘˜βˆ’1)2+π‘‡ξ“π‘˜=1||||𝑒(π‘˜)2ξƒͺ1/2,(1.12) which is associated to the Hilbert space []π‘Š={π‘£βˆΆβ„€0,𝑇+1βŸΆβ„;suchthatΔ𝑣(0)=Δ𝑣(𝑇)=0}.(1.13) In order to get the coercivity of the energy functional, the authors of [5] assumed the following on the exponent: []π‘βˆΆβ„€0,π‘‡βŸΆ(2,+∞).(1.14) The assumption above allowed them to exploit the convexity property of the map π‘₯β†’π‘₯π‘βˆ’/2.

Problem (1.11) is a discrete variant of the following problem: βˆ’π‘ξ“π‘–=1πœ•πœ•π‘₯π‘–π‘Žπ‘–ξ‚΅π‘₯,πœ•π‘’πœ•π‘₯𝑖=𝑓(π‘₯,𝑒)inΞ©,πœ•π‘’πœ•π‘›=0onΞ©,(1.15) which was studied by Boureanu and Radulescu in [26] with an additional condition that 𝑒β‰₯0. Note that, in [26], the Neumann condition is more general than the one in problem (1.11). In this paper, we use the discrete Wirtinger inequality (see [23]) which allows us to assume that the exponent π‘βˆΆβ„€[0,𝑇]β†’(1,+∞). The discrete Wirtinger inequality is a discrete variant of the well-known PoincarΓ©-Wirtinger inequality (see [28]). Another difference of the present paper compared to [5] is on the boundary condition.

The remaining part of this paper is organized as follows. Section 2 is devoted to mathematical preliminaries. The main existence and uniqueness result is stated and proved in Section 3. In Section 4, we discuss some extensions, and, finally, in Section 5, we apply our theoretical results to an example.

2. Preliminaries

From now, we will use the following notations: π‘βˆ’=min[]π‘˜βˆˆβ„€0,𝑇𝑝(π‘˜),𝑝+=max[]π‘˜βˆˆβ„€0,𝑇𝑝(π‘˜).(2.1) Moreover, it is useful to introduce other norms on π‘Š, namely, |𝑒|π‘š=ξƒ©π‘‡ξ“π‘˜=1||||𝑒(π‘˜)π‘šξƒͺ1/π‘šβˆ€π‘’βˆˆπ‘Š,π‘šβ‰₯2.(2.2) We have the following inequalities (see [6, 8]) which are used in the proof of Lemma 2.1: 𝑇(2βˆ’π‘š)/(2π‘š)|𝑒|2≀|𝑒|π‘šβ‰€π‘‡1/π‘š|𝑒|2βˆ€π‘’βˆˆπ‘Š,π‘šβ‰₯2.(2.3) In the sequel, we will use the following auxiliary result.

Lemma 2.1 (see [5]). There exist two positive constants 𝐢1, 𝐢2 such that 𝑇+1ξ“π‘˜=1||||Δ𝑒(π‘˜βˆ’1)𝑝(π‘˜βˆ’1)β‰₯𝐢1𝑇+1ξ“π‘˜=1|Δ𝑒(π‘˜βˆ’1)|2ξƒͺπ‘βˆ’/2βˆ’πΆ2,(2.4) for all π‘’βˆˆπ‘Šπ‘€π‘–π‘‘β„Žβ€–π‘’β€–>1.

We have the following result.

Lemma 2.2 (discrete Wirtinger's inequality, see Theorem 12.6.2, page 860 in [23]). For any function 𝑒(π‘˜), π‘˜βˆˆβ„€[0,𝑇] satisfying 𝑒(0)=0, the following inequality holds: 4sin2ξ‚΅πœ‹2ξ‚Ά(2𝑇+1)π‘‡ξ“π‘˜=1||||𝑒(π‘˜)2β‰€π‘‡βˆ’1ξ“π‘˜=0||||Δ𝑒(π‘˜)2.(2.5)

3. Existence and Uniqueness of Weak Solution

In this section, we study the existence and uniqueness of weak solution of (1.1).

Definition 3.1. A weak solution of (1.1) is a function π‘’βˆˆπ‘Š such that 𝑇+1ξ“π‘˜=1π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))Δ𝑣(π‘˜βˆ’1)=π‘‡ξ“π‘˜=1𝑓(π‘˜)𝑣(π‘˜)foranyπ‘£βˆˆπ‘Š.(3.1)
Note that, since π‘Š is a finite dimensional space, the weak solutions coincide with the classical solutions of the problem (1.1).
We have the following result.

Theorem 3.2. Assume that (𝐻1)–(𝐻5) hold. Then, there exists a unique weak solution of (1.1).
The energy functional corresponding to problem (1.1) is defined by π½βˆΆπ‘Šβ†’β„ such that 𝐽(𝑒)=𝑇+1ξ“π‘˜=1𝐴(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))βˆ’π‘‡ξ“π‘˜=1𝑓(π‘˜)𝑒(π‘˜).(3.2) We first present some basic properties of 𝐽.

Proposition 3.3. The functional 𝐽 is well defined on π‘Š and is of class 𝐢1(π‘Š,ℝ) with the derivative given by βŸ¨π½β€²(𝑒),π‘£βŸ©=𝑇+1ξ“π‘˜=1π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))Δ𝑣(π‘˜βˆ’1)βˆ’π‘‡ξ“π‘˜=1𝑓(π‘˜)𝑣(π‘˜),(3.3) for all 𝑒,π‘£βˆˆπ‘Š.

The proof of Proposition 3.3 can be found in [5].

We now define the functional 𝐼 by 𝐼(𝑒)=𝑇+1ξ“π‘˜=1𝐴(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1)).(3.4)

We need the following lemma for the proof of Theorem 3.2.

Lemma 3.4. The functional 𝐼 is weakly lower semicontinuous.

Proof. 𝐴 is convex with respect to the second variable according to (𝐻2). Thus, it is enough to show that 𝐼 is lower semicontinuous. For this, we fix π‘’βˆˆπ‘Š and πœ–>0. Since 𝐼 is convex, we deduce that, for any π‘£βˆˆπ‘Š, 𝐼𝐼(𝑣)β‰₯𝐼(𝑒)+ξ…žξ¬(𝑒),π‘£βˆ’π‘’β‰₯𝐼(𝑒)+𝑇+1ξ“π‘˜=1π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))(Δ𝑣(π‘˜βˆ’1)βˆ’Ξ”π‘’(π‘˜βˆ’1))β‰₯𝐼(𝑒)βˆ’π‘‡+1ξ“π‘˜=1||||||||π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))Δ𝑣(π‘˜βˆ’1)βˆ’Ξ”π‘’(π‘˜βˆ’1)β‰₯𝐼(𝑒)βˆ’π‘‡+1ξ“π‘˜=1||||||||π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))𝑣(π‘˜)βˆ’π‘’(π‘˜)+𝑒(π‘˜βˆ’1)βˆ’π‘£(π‘˜βˆ’1)β‰₯𝐼(𝑒)βˆ’π‘‡+1ξ“π‘˜=1||π‘Ž||ξ€·||𝑣||+||𝑣||ξ€Έ.(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))(π‘˜)βˆ’π‘’(π‘˜)(π‘˜βˆ’1)βˆ’π‘’(π‘˜βˆ’1)(3.5) We define 𝐻 and 𝐡 by 𝐻=𝑇+1ξ“π‘˜=1||||||||,π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))𝑣(π‘˜)βˆ’π‘’(π‘˜)𝐡=𝑇+1ξ“π‘˜=1||π‘Ž||||𝑣||.(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))(π‘˜βˆ’1)βˆ’π‘’(π‘˜βˆ’1)(3.6) By using Schwartz inequality, we get 𝐻≀𝑇+1ξ“π‘˜=1||||π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))2ξƒͺ1/2𝑇+1ξ“π‘˜=1||||𝑣(π‘˜)βˆ’π‘’(π‘˜)2ξƒͺ1/2≀𝑇+1ξ“π‘˜=1||||π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))2ξƒͺ1/2β€–π‘£βˆ’π‘’β€–.(3.7) The same calculus gives 𝐡≀𝑇+1ξ“π‘˜=1||||π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))2ξƒͺ1/2β€–π‘£βˆ’π‘’β€–.(3.8) Finally, we have 𝐼(𝑣)β‰₯𝐼(𝑒)βˆ’1+2𝑇+1ξ“π‘˜=1||||π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))2ξƒͺ1/2β€–π‘£βˆ’π‘’β€–β‰₯𝐼(𝑒)βˆ’πœ–(3.9) for all π‘£βˆˆπ‘Š with β€–π‘£βˆ’π‘’β€–<𝛿=πœ–/𝐾(𝑇,𝑒), where βˆ‘πΎ(𝑇,𝑒)=(1+2𝑇+1π‘˜=1|π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))|2)1/2.
We conclude that 𝐼 is weakly lower semicontinuous.

We also have the following result.

Proposition 3.5. The functional 𝐽 is bounded from below, coercive, and weakly lower semicontinuous.

Proof . By Lemma 3.4, 𝐽 is weakly lower semicontinuous. We will only prove the coerciveness of the energy functional since the boundedness from below of 𝐽 is a consequence of coerciveness. The other proofs can be found in [5]. By (𝐻4), we deduce that 𝐽(𝑒)=𝑇+1ξ“π‘˜=1𝐴(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))βˆ’π‘‡ξ“π‘˜=1β‰₯𝑓(π‘˜)𝑒(π‘˜)𝑇+1ξ“π‘˜=11||||𝑝(π‘˜)Δ𝑒(π‘˜βˆ’1)𝑝(π‘˜βˆ’1)βˆ’π‘‡ξ“π‘˜=1||𝑓||β‰₯1(π‘˜)𝑒(π‘˜)𝑝+𝑇+1ξ“π‘˜=1||||Δ𝑒(π‘˜βˆ’1)𝑝(π‘˜βˆ’1)βˆ’ξƒ©π‘‡ξ“π‘˜=1||||𝑓(π‘˜)2ξƒͺ1/2ξƒ©π‘‡ξ“π‘˜=1||||𝑒(π‘˜)2ξƒͺ1/2.(3.10) To prove the coercivity of 𝐽, we may assume that ‖𝑒‖>1, and we get from the above inequality and Lemma 2.1, the following: 𝐢𝐽(𝑒)β‰₯1𝑝+𝑇+1ξ“π‘˜=1|Δ𝑒(π‘˜βˆ’1)|2ξƒͺπ‘βˆ’/2βˆ’πΆ2βˆ’ξƒ©π‘‡ξ“π‘˜=1||||𝑓(π‘˜)2ξƒͺ1/2ξƒ©π‘‡ξ“π‘˜=1||||𝑒(π‘˜)2ξƒͺ1/2.(3.11) Using Wirtinger's discrete inequality, we obtain 𝐢𝐽(𝑒)β‰₯1𝑝+4sin2ξ‚΅πœ‹ξ‚Ά2(2𝑇+1)π‘‡ξ“π‘˜=1||||𝑒(π‘˜)2ξƒͺπ‘βˆ’/2βˆ’πΆ2βˆ’ξƒ©π‘‡ξ“π‘˜=1||||𝑓(π‘˜)2ξƒͺ1/2ξƒ©π‘‡ξ“π‘˜=1||||𝑒(π‘˜)2ξƒͺ1/2β‰₯𝐢12π‘βˆ’π‘+sinπ‘βˆ’ξ‚΅πœ‹ξ‚Άξƒ©2(2𝑇+1)π‘‡ξ“π‘˜=1||||𝑒(π‘˜)2ξƒͺπ‘βˆ’/2βˆ’πΆ2βˆ’ξƒ©π‘‡ξ“π‘˜=1||||𝑓(π‘˜)2ξƒͺ1/2ξƒ©π‘‡ξ“π‘˜=1||||𝑒(π‘˜)2ξƒͺ1/2β‰₯𝐢12π‘βˆ’π‘+sinπ‘βˆ’ξ‚΅πœ‹ξ‚Άβ€–2(2𝑇+1)π‘’β€–π‘βˆ’βˆ’πΎ1β€–π‘’β€–βˆ’πΆ2,(3.12) where 𝐾1 is positive constant. Hence, since π‘βˆ’>1, 𝐽 is coercive.

We can now give the proof of Theorem 3.2.

Proof of Theorem 3.2. By Proposition 3.5, 𝐽 has a minimizer which is a weak solution of (1.1).
In order to end the proof of Theorem 3.2, we will prove the uniqueness of the weak solution.
Let 𝑒1 and 𝑒2 be two weak solutions of problem (1.1), then we have 𝑇+1ξ“π‘˜=1π‘Žξ€·π‘˜βˆ’1,Δ𝑒1Δ𝑒(π‘˜βˆ’1)1βˆ’π‘’2ξ€Έ(π‘˜βˆ’1)=π‘‡ξ“π‘˜=1𝑒𝑓(π‘˜)1βˆ’π‘’2ξ€Έ(π‘˜),𝑇+1ξ“π‘˜=1π‘Žξ€·π‘˜βˆ’1,Δ𝑒2Δ𝑒(π‘˜βˆ’1)1βˆ’π‘’2ξ€Έ(π‘˜βˆ’1)=π‘‡ξ“π‘˜=1𝑓𝑒(π‘˜)1βˆ’π‘’2ξ€Έ(π‘˜).(3.13) Adding the two equalities of (3.13), we obtain 𝑇+1ξ“π‘˜=1ξ€Ίπ‘Žξ€·π‘˜βˆ’1,Δ𝑒1ξ€Έξ€·(π‘˜βˆ’1)βˆ’π‘Žπ‘˜βˆ’1,Δ𝑒2Δ𝑒(π‘˜βˆ’1)ξ€Έξ€»1βˆ’π‘’2ξ€Έ(π‘˜βˆ’1)=0.(3.14) Using (𝐻3), we deduce from (3.14) that Δ𝑒1(π‘˜βˆ’1)=Δ𝑒2(π‘˜βˆ’1)βˆ€π‘˜=1,…,𝑇+1.(3.15) Therefore, by using discrete's Wirtinger inequality, we get 4sin2ξ‚΅πœ‹2ξ‚Ά(2𝑇+1)π‘‡ξ“π‘˜=1||𝑒1βˆ’π‘’2ξ€Έ||(π‘˜)2≀𝑇+1ξ“π‘˜=1||Δ𝑒1βˆ’π‘’2ξ€Έ||(π‘˜βˆ’1)2=0,(3.16) which implies that (βˆ‘π‘‡π‘˜=1|(𝑒1βˆ’π‘’2)(π‘˜)|2)1/2=0. It follows that 𝑒1=𝑒2.

4. Some Extensions

4.1. Extension 1

In this section, we show that the existence result obtained for (1.1) can be extended to more general discrete boundary value problem of the form ||||βˆ’Ξ”(π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1)))+𝑒(π‘˜)π‘ž(π‘˜)βˆ’2[]𝑒(π‘˜)=𝑓(π‘˜),π‘˜βˆˆβ„€1,𝑇𝑒(0)=Δ𝑒(𝑇)=0,(4.1) where 𝑇β‰₯2 is a positive integer, and we assume that (𝐻6)π‘žβˆΆβ„€[1,𝑇]β†’(1,+∞).By a weak solution of problem (4.1), we understand a function π‘’βˆˆπ‘Š such that, for any π‘£βˆˆπ‘Š, 𝑇+1ξ“π‘˜=1π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))Δ𝑣(π‘˜βˆ’1)+π‘‡ξ“π‘˜=1||||𝑒(π‘˜)π‘ž(π‘˜)βˆ’2𝑒(π‘˜)𝑣(π‘˜)=π‘‡ξ“π‘˜=1𝑓(π‘˜)𝑣(π‘˜).(4.2)

We have the following result.

Theorem 4.1. Under assumptions (𝐻1)–(𝐻6), there exists a unique weak solution of problem (4.1).

Proof . For π‘’βˆˆπ‘Š, 𝐽(𝑒)=𝑇+1ξ“π‘˜=1𝐴(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))+π‘‡ξ“π‘˜=11𝑝||||(π‘˜)𝑒(π‘˜)π‘ž(π‘˜)βˆ’π‘‡ξ“π‘˜=1𝑓(π‘˜)𝑒(π‘˜)(4.3) is such that 𝐽∈𝐢1(π‘Š;ℝ) and is weakly lower semicontinuous, and we have ξ«π½ξ…žξ¬=(𝑒),𝑣𝑇+1ξ“π‘˜=1+π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))Δ𝑣(π‘˜βˆ’1)π‘‡ξ“π‘˜=1||||𝑒(π‘˜)π‘ž(π‘˜)βˆ’2𝑒(π‘˜)𝑣(π‘˜)βˆ’π‘‡ξ“π‘˜=1𝑓(π‘˜)𝑣(π‘˜),(4.4) for all 𝑒,π‘£βˆˆπ‘Š.
This implies that the weak solutions of problem (4.1) coincide with the critical points of 𝐽. We then have to prove that 𝐽 is bounded below and coercive in order to complete the proof.
As π‘‡ξ“π‘˜=11||||π‘ž(π‘˜)𝑒(π‘˜)π‘ž(π‘˜)β‰₯0,(4.5) then 𝐽(𝑒)β‰₯𝑇+1ξ“π‘˜=1𝐴(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))βˆ’π‘‡ξ“π‘˜=1𝑓(π‘˜)𝑣(π‘˜).(4.6) Using Proposition 3.5, we deduce that 𝐽 is bounded below and coercive.
Let 𝑒1 and 𝑒2 be two weak solutions of problem (4.1), then we have 𝑇+1ξ“π‘˜=1π‘Žξ€·π‘˜βˆ’1,Δ𝑒1Δ𝑒(π‘˜βˆ’1)1βˆ’π‘’2ξ€Έ(π‘˜βˆ’1)+π‘‡ξ“π‘˜=1||𝑒1||(π‘˜)π‘ž(π‘˜)βˆ’2𝑒1𝑒(π‘˜)1(π‘˜)βˆ’π‘’2ξ€Έ=(π‘˜)π‘‡ξ“π‘˜=1𝑒𝑓(π‘˜)1βˆ’π‘’2ξ€Έ(π‘˜),𝑇+1ξ“π‘˜=1π‘Žξ€·π‘˜βˆ’1,Δ𝑒2Δ𝑒(π‘˜βˆ’1)1βˆ’π‘’2ξ€Έ(π‘˜βˆ’1)+π‘‡ξ“π‘˜=1||𝑒2||(π‘˜)π‘ž(π‘˜)βˆ’2𝑒2𝑒(π‘˜)1(π‘˜)βˆ’π‘’2ξ€Έ=(π‘˜)π‘‡ξ“π‘˜=1𝑒𝑓(π‘˜)1βˆ’π‘’2ξ€Έ(π‘˜).(4.7) Adding these two equalities, we obtain 𝑇+1ξ“π‘˜=1ξ€Ίπ‘Žξ€·π‘˜βˆ’1,Δ𝑒1ξ€Έξ€·(π‘˜βˆ’1)βˆ’π‘Žπ‘˜βˆ’1,Δ𝑒2Δ𝑒(π‘˜βˆ’1)ξ€Έξ€»1βˆ’π‘’2ξ€Έ+(π‘˜βˆ’1)π‘‡ξ“π‘˜=1ξ‚€||𝑒1||(π‘˜)π‘ž(π‘˜)βˆ’2𝑒1||𝑒(π‘˜)βˆ’2||(π‘˜)π‘ž(π‘˜)βˆ’2𝑒2𝑒(π‘˜)1(π‘˜)βˆ’π‘’2ξ€Έ(π‘˜)=0.(4.8) We deduce that π‘‡ξ“π‘˜=1ξ‚€||𝑒1||(π‘˜)π‘ž(π‘˜)βˆ’2𝑒1||𝑒(π‘˜)βˆ’2||(π‘˜)π‘ž(π‘˜)βˆ’2𝑒2𝑒(π‘˜)1(π‘˜)βˆ’π‘’2ξ€Έ(π‘˜)=0,(4.9) which implies that 𝑒1(π‘˜)βˆ’π‘’2(π‘˜)=0βˆ€π‘˜=1,…,𝑇,(4.10) and we get 𝑒1=𝑒2.

4.2. Extension 2

In this section, we show that the existence result obtained for (1.1) can be extended to more general discrete boundary value problem of the form ||||βˆ’Ξ”(π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1)))+πœ†π‘’(π‘˜)𝛽+βˆ’2[],𝑒(π‘˜)=𝑓(π‘˜,𝑒(π‘˜)),π‘˜βˆˆβ„€1,𝑇𝑒(0)=Δ𝑒(𝑇)=0,(4.11) where 𝑇β‰₯2 is a positive integer, πœ†βˆˆβ„+, and π‘“βˆΆβ„€[1,𝑇]×ℝ→ℝ is a continuous function with respect to the second variable for all (π‘˜,𝑧)βˆˆβ„€[1,𝑇]×ℝ.

For every π‘˜βˆˆβ„€[1,𝑇] and every π‘‘βˆˆβ„, we put ∫𝐹(π‘˜,𝑑)=𝑑0𝑓(π‘˜,𝜏)π‘‘πœ.

By a weak solution of problem (4.11), we understand a function π‘’βˆˆπ‘Š such that 𝑇+1ξ“π‘˜=1π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))Δ𝑣(π‘˜βˆ’1)+πœ†π‘‡ξ“π‘˜=1||||𝑒(π‘˜)𝛽+βˆ’2=𝑒(π‘˜)𝑣(π‘˜)π‘‡ξ“π‘˜=1𝑓(π‘˜,𝑒(π‘˜))𝑣(π‘˜),foranyπ‘£βˆˆπ‘Š.(4.12) We assume the following.(𝐻7)𝑓(π‘˜,β‹…)βˆΆβ„β†’β„ is continuous for all π‘˜βˆˆβ„€[1,𝑇].(𝐻8) There exists a positive constant 𝐢3 such that |𝑓(π‘˜,𝑑)|≀𝐢3(1+|𝑑|𝛽(π‘˜)βˆ’1), for all π‘˜βˆˆβ„€[1,𝑇] and π‘‘βˆˆβ„.(𝐻9)1<π›½βˆ’<π‘βˆ’.

Remark 4.2. The hypothesis (𝐻8) implies that there exists one constant 𝐢′>0 such that |𝐹(π‘˜,𝑑)|≀𝐢′(1+|𝑑|𝛽(π‘˜)).
We have the following result.

Theorem 4.3. Under assumptions (𝐻2)–(𝐻5) and (𝐻7)–(𝐻9), there exists πœ†βˆ—>0 such that, for πœ†βˆˆ[πœ†βˆ—,+∞), the problem (4.11) has at least one weak solution.

Proof. Let βˆ‘π‘”(𝑒)=π‘‡π‘˜=1𝐹(π‘˜,𝑒(π‘˜)), then π‘”ξ…žβˆΆπ‘Šβ†’π‘Š is completely continuous, and, thus, 𝑔 is weakly lower semicontinuous.
Therefore, for π‘’βˆˆπ‘Š, 𝐽(𝑒)=𝑇+1ξ“π‘˜=1πœ†π΄(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))+𝛽+π‘‡ξ“π‘˜=1||||𝑒(π‘˜)𝛽+βˆ’π‘‡ξ“π‘˜=1𝐹(π‘˜,𝑒(π‘˜))(4.13) is such that 𝐽∈𝐢1(π‘Š;ℝ) and is weakly lower semicontinuous, and we have ξ«π½ξ…žξ¬=(𝑒),𝑣𝑇+1ξ“π‘˜=1π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))Δ𝑣(π‘˜βˆ’1)+πœ†π‘‡ξ“π‘˜=1||||𝑒(π‘˜)𝛽+βˆ’2βˆ’π‘’(π‘˜)𝑣(π‘˜)π‘‡ξ“π‘˜=1𝑓(π‘˜,𝑒(π‘˜))𝑣(π‘˜),(4.14) for all 𝑒,π‘£βˆˆπ‘Š.
This implies that the weak solutions of problem (4.11) coincide with the critical points of 𝐽. We then have to prove that 𝐽 is bounded below and coercive in order to complete the proof.
Then, for π‘’βˆˆπ‘Š such that ‖𝑒‖>1, 𝐢𝐽(𝑒)β‰₯12π‘βˆ’π‘+sinπ‘βˆ’ξ‚΅πœ‹ξ‚Ά2(2𝑇+1)β€–π‘’β€–π‘βˆ’+πœ†π›½+π‘‡ξ“π‘˜=1||||𝑒(π‘˜)𝛽+βˆ’πΆ2βˆ’π‘‡ξ“π‘˜=1β‰₯𝐢𝐹(π‘˜,𝑒(π‘˜))12π‘βˆ’π‘+sinπ‘βˆ’ξ‚΅πœ‹2ξ‚Ά(2𝑇+1)β€–π‘’β€–π‘βˆ’+πœ†π›½+π‘‡ξ“π‘˜=1||||𝑒(π‘˜)𝛽+βˆ’πΆ2βˆ’πΆβ€²π‘‡ξ“π‘˜=1ξ‚€||||1+𝑒(π‘˜)𝛽(π‘˜)β‰₯𝐢12π‘βˆ’π‘+sinπ‘βˆ’ξ‚΅πœ‹ξ‚Ά2(2𝑇+1)β€–π‘’β€–π‘βˆ’+πœ†π›½+π‘‡ξ“π‘˜=1||||𝑒(π‘˜)𝛽+βˆ’πΆ2ξƒ©βˆ’πΆβ€²π‘‡βˆ’πΆβ€²π‘‡ξ“π‘˜=1||||𝑒(π‘˜)𝛽(π‘˜)ξƒͺβ‰₯𝐢12π‘βˆ’π‘+sinπ‘βˆ’ξ‚΅πœ‹ξ‚Ά2(2𝑇+1)β€–π‘’β€–π‘βˆ’+ξ‚΅πœ†π›½+βˆ’πΆξ…žξ‚Άπ‘‡ξ“π‘˜=1||𝑒||(π‘˜)𝛽+βˆ’πΆ2βˆ’πΆβ€²π‘‡βˆ’πΆβ€²β€–π‘’β€–π›½βˆ’β‰₯𝐢12π‘βˆ’π‘+sinπ‘βˆ’ξ‚΅πœ‹2ξ‚Ά(2𝑇+1)β€–π‘’β€–π‘βˆ’βˆ’πΆ2βˆ’πΆβ€²π‘‡βˆ’πΆβ€²β€–π‘’β€–π›½βˆ’,(4.15) where we put πœ†βˆ—=𝐢′𝛽+ with 𝐢′ a positive constant.
Furthermore, by the fact that 1<π›½βˆ’<π‘βˆ’, it turns out that 𝐢𝐽(𝑒)β‰₯𝑝+β€–π‘’β€–π‘βˆ’βˆ’πΆ2βˆ’πΆξ…žπ‘‡βˆ’πΆξ…žβ€–π‘’β€–π›½βˆ’βŸΆ+∞asβ€–π‘’β€–βŸΆ+∞.(4.16) Therefore, 𝐽 is coercive.

4.3. Extension 3

We consider the problem []π‘’βˆ’Ξ”(π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1)))=𝑓(π‘˜,𝑒(π‘˜)),π‘˜βˆˆβ„•1,𝑇(0)=Δ𝑒(𝑇)=0,(4.17) where 𝑇β‰₯2.

We suppose the following.(𝐻10)There exist two positive constants 𝐢5 and 𝐢6 such that 𝑓+(π‘˜,𝑑)≀𝐢5+𝐢6|𝑑|π›½βˆ’1, for all (π‘˜,𝑑)βˆˆβ„€[1,𝑇]×ℝ, where 1<𝛽<π‘βˆ’.

Definition 4.4. A weak solution of problem (4.17) is a function π‘’βˆˆπ‘Š such that 𝑇+1ξ“π‘˜=1π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))Δ𝑣(π‘˜βˆ’1)=π‘‡ξ“π‘˜=1𝑓(π‘˜,𝑒(π‘˜))𝑣(π‘˜),βˆ€π‘£βˆˆπ‘Š.(4.18)
We have the following result.

Theorem 4.5. Under the hypothesis (𝐻2)–(𝐻5) and (𝐻10), problem (4.3) admits at least one weak solution.

Proof. We consider𝐽(𝑒)=𝑇+1ξ“π‘˜=1𝐴(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))βˆ’π‘‡ξ“π‘˜=1𝐹(π‘˜,𝑒(π‘˜)),βˆ€π‘’βˆˆπ».(4.19)𝐽 is such that 𝐽∈𝐢1(π‘Š,ℝ) and ξ«π½ξ…žξ¬=(𝑒),𝑣𝑇+1ξ“π‘˜=1π‘Ž(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))Δ𝑣(π‘˜βˆ’1)βˆ’π‘‡ξ“π‘˜=1𝑓(π‘˜,𝑒(π‘˜))𝑣(π‘˜),(4.20) for all 𝑒,π‘£βˆˆπ‘Š.
As 𝑓=𝑓+βˆ’π‘“βˆ’, then πΉβˆ’βˆ«(π‘˜,𝑑)=𝑇0𝑓+(π‘˜,𝜏)π‘‘πœ.
By (𝐻10), there exists 𝐢>0 such that ||𝐹+||ξ€·(π‘˜,𝑑)≀𝐢1+|𝑑|𝛽.(4.21) For all π‘’βˆˆπ‘Š such that ‖𝑒‖>1, we have 𝐽(𝑒)=𝑇+1ξ“π‘˜=1𝐴(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))βˆ’π‘‡ξ“π‘˜=1=𝐹(π‘˜,𝑒(π‘˜))𝑇+1ξ“π‘˜=1𝐴(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))βˆ’π‘‡ξ“π‘˜=1𝐹+(π‘˜,𝑒(π‘˜))+π‘‡ξ“π‘˜=1πΉβˆ’β‰₯(π‘˜,𝑒(π‘˜))𝑇+1ξ“π‘˜=1𝐴(π‘˜βˆ’1,Δ𝑒(π‘˜βˆ’1))βˆ’π‘‡ξ“π‘˜=1𝐹+(π‘˜,𝑒(π‘˜)).(4.22) Therefore, similar to the proof of Theorem 4.3, Theorem 4.5 follows immediately.

5. Example

We consider the following problem: ξ‚€||||βˆ’Ξ”Ξ”π‘’(0)2||||Δ𝑒(0)+πœ†π‘’(1)21𝑒(1)=5(𝑒(1))2,ξ‚€||||βˆ’Ξ”Ξ”π‘’(1)3||||Δ𝑒(1)+πœ†π‘’(2)21𝑒(2)=5(𝑒(2))3,𝑒(0)=0,𝑒(2)=𝑒(3).(5.1) Then, 𝑇=2, 𝑝(0)=4, 𝑝(1)=5, 𝛽(1)=3, 𝛽(2)=4, π‘βˆ’=4, 𝑝+=5, π›½βˆ’=3, 𝛽+=4,𝑓(1,𝑑)=(1/5)𝑑2, and 𝑓(2,𝑑)=(1/5)𝑑3. Thus, 1𝐹(1,𝑑)=𝑑1531,𝐹(2,𝑑)=𝑑204.(5.2) After computation, we can take 𝐢′=1/15 and we deduce that πœ†βˆ—=4/15.

Therefore, by Theorem 4.3, for any πœ†β‰₯4/15, Problem (5.1) admits at least one weak solution.

Acknowledgment

The authors want to express their deepest thanks to the editor and anonymous referees for comments and suggestions on the paper.