Research Article
Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networks
Table 3
Experimental data set.
| Sample number | % of graphene | Speed | Tensile strength (MPa) | Thermal conductivity (w/m·K) | Degradation temperature (°C) | Crystallization temperature (°C) | Data partition |
| 1 | 0 | 50 | 21.5 | 0.37 | 476.12 | 109.18 | Validation | 2 | 0 | 100 | 23.27 | 0.37 | 476.72 | 109.43 | Training | 3 | 0 | 150 | 22.49 | 0.35 | 477 | 109.53 | Training | 4 | 1 | 50 | 22.4 | 0.38 | 479.36 | 112.13 | Testing | 5 | 1 | 100 | 23.05 | 0.37 | 479.73 | 112.88 | Testing | 6 | 1 | 150 | 23.7 | 0.41 | 480.2 | 113.05 | Testing | 7 | 2 | 50 | 23.7 | 0.39 | 480.7 | 112.43 | Training | 8 | 2 | 100 | 24.87 | 0.39 | 480.7 | 113.1 | Validation | 9 | 2 | 150 | 26.26 | 0.43 | 481.7 | 113.55 | Training | 10 | 4 | 50 | 25.86 | 0.39 | 481.73 | 112.95 | Training | 11 | 4 | 100 | 22.7 | 0.4 | 482.4 | 113.26 | Training | 12 | 4 | 150 | 33.13 | 0.437 | 483.7 | 113.54 | Training | 13 | 6 | 50 | 23.66 | 0.4 | 481.76 | 113.6 | Training | 14 | 6 | 100 | 22 | 0.41 | 483.11 | 113.8 | Training | 15 | 6 | 150 | 23.63 | 0.47 | 485.62 | 113.55 | Validation | 16 | 8 | 50 | 21.44 | 0.42 | 483.66 | 113.95 | Training | 17 | 8 | 100 | 20.52 | 0.42 | 485.42 | 114.1 | Testing | 18 | 8 | 150 | 21.47 | 0.477 | 486.64 | 114.5 | Training | 19 | 10 | 50 | 19.38 | 0.47 | 488.09 | 114.81 | Validation | 20 | 10 | 100 | 18.8 | 0.472 | 489.28 | 114.17 | Validation | 21 | 10 | 150 | 19.65 | 0.5 | 490 | 115 | Testing |
|
|