Research Article

Optimization and Prediction of Mechanical and Thermal Properties of Graphene/LLDPE Nanocomposites by Using Artificial Neural Networks

Table 3

Experimental data set.

Sample number% of grapheneSpeedTensile strength
(MPa)
Thermal conductivity (w/m·K)Degradation temperature (°C)Crystallization temperature (°C)Data partition

105021.50.37476.12109.18Validation
2010023.270.37476.72109.43Training
3015022.490.35477109.53Training
415022.40.38479.36112.13Testing
5110023.050.37479.73112.88Testing
6115023.70.41480.2113.05Testing
725023.70.39480.7112.43Training
8210024.870.39480.7113.1Validation
9215026.260.43481.7113.55Training
1045025.860.39481.73112.95Training
11410022.70.4482.4113.26Training
12415033.130.437483.7113.54Training
1365023.660.4481.76113.6Training
146100220.41483.11113.8Training
15615023.630.47485.62113.55Validation
1685021.440.42483.66113.95Training
17810020.520.42485.42114.1Testing
18815021.470.477486.64114.5Training
19105019.380.47488.09114.81Validation
201010018.80.472489.28114.17Validation
211015019.650.5490115Testing