Research Article
LSTM Recurrent Neural Network-Based Frequency Control Enhancement of the Power System with Electric Vehicles and Demand Management
Table 3
ITAE of the proposed controller.
| | S. No | Case | Area | PID controller | Fuzzy controller | Proposed controller |
| | 1. | Case 01 | Area 01 | 0.5023 | 0.2917 | 0.2740 | | Area 02 | 0.2318 | 0.2101 | 0.1681 | | Area 03 | 2.6951 | 1.0208 | 0.8179 | | Area 04 | 0.8214 | 0.8110 | 0.7676 |
| | 2. | Case 02 | Area 01 | 0.4797 | 0.2778 | 0.2770 | | Area 02 | 0.1803 | 0.1595 | 0.1592 | | Area 03 | 2.1758 | 0.9932 | 0.7964 | | Area 04 | 0.8200 | 0.8051 | 0.7526 |
| | 3. | Case 03 | Area 01 | 0.4952 | 0.2868 | 0.2859 | | Area 02 | 0.1861 | 0.1646 | 0.1644 | | Area 03 | 2.2460 | 1.0253 | 0.8220 | | Area 04 | 0.8388 | 0.8225 | 0.7729 |
| | 4. | Case 04 | Area 01 | 0.4970 | 0.2886 | 0.2711 | | Area 02 | 0.2294 | 0.2079 | 0.1663 | | Area 03 | 2.6667 | 1.0100 | 0.8092 | | Area 04 | 0.8127 | 0.8025 | 0.7595 |
|
|