Research Article
Environmental Fault Diagnosis of Solar Panels Using Solar Thermal Images in Multiple Convolutional Neural Networks
Table 4
Intermediate results for SqueezeNet, AlexNet, and GoogleNet.
| Type of network | Epoch | Iteration | Time elapsed (hh:mm:ss) | Validation accuracy | Training accuracy | Validation loss | Training loss |
| SqueezeNet | 1 | 1 | 00 : 00 : 26 | 17.3585 | 18.95 | 3.3108 | 3.2987 | 2 | 75 | 00 : 07 : 07 | 92.376 | 91.9345 | 0.1751 | 0.06371 | 3 | 155 | 00 : 14 : 10 | 100 | 100 | 0.0436 | 0.00668 | 3 (end) | 231 | 00 : 20 : 44 | 100 | 100 | 0.0267 | 0.01164 |
| AlexNet | 1 | 1 | 00 : 00 : 18 | 13.5849 | 12.5 | 3.7124 | 4.5314 | 2 | 75 | 00 : 04 : 11 | 94.5783 | 99.875 | 0.00021 | 4.575e-05 | 3 | 155 | 00 : 09 : 35 | 100 | 100 | 6.9009e-05 | 2.644e-05 | 3 (end) | 231 | 00 : 14 : 16 | 100 | 100 | 9.0214e-05 | 0.0008 |
| GoogleNet | 1 | 1 | 00 : 00 : 28 | 18.4905 | 19.3834 | 2.63963 | 3.1751 | 2 | 75 | 00 : 08 : 07 | 96.9811 | 92.4764 | 0.13759 | 0.0445 | 3 | 155 | 00 : 14 : 50 | 100 | 99.1528 | 0.02365 | 0.005 | 3 (end) | 231 | 00 : 23 : 00 | 100 | 100 | 0.0124 | 0.0026 |
|
|