Research Article
Joint Feature Selection of Power Load in Time Domain and Frequency Domain Based on Whale Optimization Algorithm
Table 2
Classification results of original power signals.
| | Classifier | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Mean value | Standard deviation |
| Accuracy (%) | BP | 39.44 | 42.36 | 49.51 | 44.75 | 43.01 | 43.81 | 3.72 | ELM | 38.14 | 40.85 | 45.39 | 41.82 | 41.28 | 41.50 | 2.60 | SVM | 46.56 | 46.72 | 46.30 | 45.91 | 46.20 | 46.34 | 0.32 | KNN | 25.24 | 25.79 | 25.46 | 27.95 | 23.84 | 25.66 | 1.48 | DT | 49.14 | 49.14 | 49.14 | 49.14 | 49.14 | 49.14 | 0.00 | NB | 73.44 | 73.44 | 73.44 | 73.44 | 73.44 | 73.44 | 0.00 |
| Time (s) | BP | 227.1572 | 217.4501 | 222.0936 | 222.8179 | 218.7004 | 221.6438 | 3.8154 | ELM | 0.4152 | 0.4418 | 0.4476 | 0.4367 | 0.4139 | 0.4310 | 0.0155 | SVM | 211.3685 | 222.0861 | 223.4372 | 214.3196 | 216.0319 | 217.4487 | 5.1511 | KNN | 1.8922 | 1.9682 | 1.7896 | 1.9046 | 1.8769 | 1.8863 | 0.0643 | DT | 2.1488 | 2.1372 | 2.0935 | 2.1837 | 2.0789 | 2.1284 | 0.0425 | NB | 4970.3256 | 4975.1241 | 4961.7400 | 4950.3201 | 4958.9041 | 4963.2828 | 9.7391 |
| Description of core parameters of the classifier | (1) : represents the number of hidden layer neurons in BP. | (2) : represents the number of hidden layer neurons in ELM. | (3) : represents penalty parameter, and represents the parameter of kernel function. | (4) : represents the number of nearest neighbors in the input for classifying each point when predicting. | (5) : represents maximal number of decision splits (or branch nodes) per tree. | (6) : represents the distribution used to model the data, and “kernel” refers to kernel smoothing density estimate. |
|
|