Research Article

Charging Station Management Strategy for Returns Maximization via Improved TD3 Deep Reinforcement Learning

Table 2

Pseudocode of proposed Improved TD3 algorithm.

Pseudocode of improved TD3 algorithm for sales price and energy scheduling

1Initialization critic network with , , and actor network with random parameters , ,
Initialization target networks , ,
Initialize replay buffer and beta parameter
2for  = 1:  (time step of exploring cycle) do
3   Select a random noise for action exploration
4   get initial states:
5   for  = 1:  (time step of training cycle) do
6   Select action with exploration noise
7   Execute action observe rewards and new states
8   Store transition in
9   Sample mini-batch of transitions from
10   ,
11   
12   Update critics
13   If mod then
14      Update the actor policy by the deterministic policy gradient:
15      
16      Update target networks:
17
18end if
19   end for