An Extensible Gradient-Based Optimization Method for Parameter Identification in Power Distribution Network
Table 2
The results of parameter identification with the loss function of mean square error.
Method
MAE
RMSE
MAPE
AGBO-Pro
25.415±0.855
32.511±1.050
0.415±0.014
AGBO
64.100 ± 0.474
65.791 ± 0.478
1.047 ± 0.008
RS
65.570 ± 0.746
67.148 ± 0.699
1.071 ± 0.012
TPE
64.689 ± 0.648
66.355 ± 0.633
1.057 ± 0.011
SA
65.894 ± 0.983
67.439 ± 0.913
1.077 ± 0.016
AO
64.5001 ± 0.7016
66.1795 ± 0.6854
1.0539 ± 0.0115
NRO
64.5174 ± 0.6998
66.1954 ± 0.6837
1.054 ± 0.0114
PSS
64.6944 ± 0.6984
66.3599 ± 0.6847
1.0571 ± 0.0114
AGBO-Pro uses mean square loss to ensure fairness in comparison. The bold values indicate that the AGBO-Pro method gains the lowest values in all three evaluation functions, viz. MAE, RMSE and MAPE, indicting its best performance.