Research Article

Short-Term Power Prediction of Wind Power Generation System Based on Logistic Chaos Atom Search Optimization BP Neural Network

Table 1

Results of power prediction values for the four prediction models.

Sampling points5101520253035404550

Measured values21.724219.777823.225335.663934.500129.784230.120830.649329.184641.0771
BP predicted values22.412220.756024.282936.345235.321130.288930.670631.194829.662441.4405
GA-BP predicted values21.570719.701822.918834.970233.751029.309629.608830.106328.634040.3058
PSO-BP predicted values21.643319.785823.002435.030733.816229.388429.688930.184528.714640.3577
LCASO-BP predicted values21.813219.874823.308135.695534.536629.840030.175330.701629.242941.0865
AE values of BP0.68800.97821.05760.68130.82090.50480.54980.54540.47780.3634
AE values of GA-BP0.15350.07600.30650.69360.74900.47460.51200.54300.55050.7712
AE values of PSO-BP0.08090.00800.22280.63310.68380.39580.43190.46480.47000.7194
AE values of LCASO-BP0.08890.09690.08270.03160.03640.05580.05450.05220.05830.0094
RE values of BP0.03160.04940.04550.01910.02380.01690.01830.01780.01630.0088
RE values of GA-BP0.00700.00380.01320.01940.02170.01590.01700.01770.01880.0187
RE values of PSO-BP0.00370.00040.00960.01770.01980.01330.01430.01510.01610.0175
RE values of LCASO-BP0.00400.00490.00350.00080.00100.00190.00180.00170.00200.0002