Abstract

We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorithms with known ones and confirm the theoretical results.

1. Introduction

Finding the solution of nonlinear equations is one of the most important problems in numerical analysis. There are some texts that have become classic, as the one of Traub (see [1]) and Neta (see [2]) which include a vast collection of methods and their efficiency, or the paper by Neta and Johnson, [3]), Jarratt (see [4]), or Homeier (see [5]), among others.

As the order of an iterative method increases, so does the number of functional evaluations per step. The efficiency index (see [6]) gives a measure of the balance between those quantities, according to the formula 𝐼=𝑝1/𝑑, where 𝑝 is the order of convergence of the method and 𝑑 is the number of functional evaluations per step. Kung and Traub conjectured in [7] that the order of convergence of any multipoint method without memory cannot exceed the bound 2π‘‘βˆ’1 (called the optimal order). Thus, the optimal order for a method with 3 functional evaluations per step would be 4. King's method [8], Chun's schemes (see [9, 10]), Chun et al. [11], Maheshwari's procedure (see [12]), and Jarratt's method [4] are some of optimal fourth-order methods, because they only perform three functional evaluations per step.

More recently, optimal eighth-order iterative methods have been investigated by many researchers (see, e.g., [13] where the authors show optimal methods of order eight and sixteen). Bi et al. in [14] developed a new family of eighth-order iterative methods for solving nonlinear equations, which is denoted by BRW8 and whose iterative expression is π‘¦π‘š=π‘₯π‘šβˆ’π‘“ξ€·π‘₯π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έ,π‘§π‘š=π‘¦π‘šβˆ’π‘“ξ€·π‘₯π‘šξ€Έβˆ’ξ€·π‘¦(1/2)π‘“π‘šξ€Έπ‘“ξ€·π‘₯π‘šξ€Έξ€·π‘¦βˆ’(5/2)π‘“π‘šξ€Έπ‘“ξ€·π‘¦π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έ,π‘₯π‘š+1=π‘§π‘šβˆ’π‘“ξ€·π‘₯π‘šξ€Έ+𝑧(πœƒ+2)π‘“π‘šξ€Έπ‘“ξ€·π‘₯π‘šξ€Έξ€·π‘§+πœƒπ‘“π‘šξ€Έπ‘“ξ€·π‘§π‘šξ€Έπ‘“ξ€Ίπ‘§π‘š,π‘¦π‘šξ€»ξ€Ίπ‘§+π‘“π‘š,π‘₯π‘š,π‘₯π‘šπ‘§ξ€»ξ€·π‘šβˆ’π‘¦π‘šξ€Έ,(1.1) where πœƒβˆˆβ„.

Also Cordero et al. in [15] developed a parametric family of eighth-order methods based on Ostrowski's scheme, that we will denote by M8. It can be expressed as π‘¦π‘š=π‘₯π‘šβˆ’π‘“ξ€·π‘₯π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έ,π‘§π‘š=π‘₯π‘šβˆ’π‘“ξ€·π‘₯π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έπ‘“ξ€·π‘₯π‘šξ€Έξ€·π‘¦βˆ’π‘“π‘šξ€Έπ‘“ξ€·π‘₯π‘šξ€Έξ€·π‘¦βˆ’2π‘“π‘šξ€Έ,π‘’π‘š=π‘§π‘šβˆ’π‘“ξ€·π‘§π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έξƒ©π‘“ξ€·π‘₯π‘šξ€Έξ€·π‘¦βˆ’π‘“π‘šξ€Έπ‘“ξ€·π‘₯π‘šξ€Έξ€·π‘¦βˆ’2π‘“π‘šξ€Έ+12π‘“ξ€·π‘§π‘šξ€Έπ‘“ξ€·π‘¦π‘šξ€Έξ€·π‘§βˆ’2π‘“π‘šξ€Έξƒͺ2,π‘₯π‘š+1=π‘’π‘šβˆ’π‘“ξ€·π‘§π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έ3𝛽2+𝛽3π‘’ξ€Έξ€·π‘šβˆ’π‘§π‘šξ€Έπ›½1ξ€·π‘’π‘šβˆ’π‘§π‘šξ€Έ+𝛽2ξ€·π‘¦π‘šβˆ’π‘₯π‘šξ€Έ+𝛽3ξ€·π‘§π‘šβˆ’π‘₯π‘šξ€Έ,(1.2) where 𝛽2+𝛽3β‰ 0. Other family of variants of Ostrowski's method with eighth-order convergence was developed by Liu and Wang in [16]. We will denote it by LW8 and its iterative expression is π‘¦π‘š=π‘₯π‘šβˆ’π‘“ξ€·π‘₯π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έ,π‘§π‘š=π‘₯π‘šβˆ’π‘“ξ€·π‘₯π‘šπ‘“ξ€·π‘₯ξ€Έξ€·π‘šξ€Έξ€·π‘¦βˆ’π‘“π‘šξ€Έξ€Έπ‘“ξ…žξ€·π‘₯π‘šπ‘“ξ€·π‘₯ξ€Έξ€·π‘šξ€Έξ€·π‘¦βˆ’2π‘“π‘š,π‘₯ξ€Έξ€Έπ‘š+1=π‘§π‘šβˆ’π‘“ξ€·π‘§π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€ΈβŽ‘βŽ’βŽ’βŽ£ξƒ©π‘“ξ€·π‘₯π‘šξ€Έξ€·π‘¦βˆ’π‘“π‘šξ€Έπ‘“ξ€·π‘₯π‘šξ€Έξ€·π‘¦βˆ’2π‘“π‘šξ€Έξƒͺ2+π‘“ξ€·π‘§π‘šξ€Έπ‘“ξ€·π‘₯π‘šξ€Έξ€·π‘¦βˆ’π›Όπ‘“π‘šξ€Έξƒ©π‘“ξ€·π‘§+πΊπ‘šξ€Έπ‘“ξ€·π‘₯π‘šξ€Έξƒͺ⎀βŽ₯βŽ₯⎦,(1.3) where 𝛼 is constant and 𝐺 denotes a real-valued function.

Let us note that all these methods are optimal in the sense of Kung-Traub's conjecture (see [7]) for methods without memory; that is, they reach eighth-order convergence with only four functional evaluations.

It is usual to design high-order methods from Ostrowski-type schemes, as they are optimal and use few operations per step, trying to obtain procedures as efficient as possible by using different techniques (see, for instance [13, 15, 16]). If we compose Newton and Ostrowski's methods, and estimate the last derivative by divided differences, it is necessary to use divided differences of second order to reach eighth order of convergence (see [14]). Nevertheless, as we will see in the next section, it is possible to obtain an optimal eighth-order scheme by composing King and Newton's methods by using only divided differences of first order.

In this paper, we design a family of eighth-order iterative methods to find a simple root π‘₯βˆ— of the nonlinear equation 𝑓(π‘₯)=0, where π‘“βˆΆπ·β†’β„ is a smooth function, and 𝐷 is an open interval. We present in Section 2 a family of eighth-order iterative methods, based on Chun's method. In Section 3, different numerical examples confirm the theoretical results and allow us to compare the new methods with other known methods mentioned in the introduction. Finally, some conclusions are presented in Section 4.

2. Development of Eighth-Order Algorithm

Let us consider the family of optimal methods proposed by Chun in [9], that is a variant of King's family, π‘¦π‘š=π‘₯π‘šβˆ’π‘“ξ€·π‘₯π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έ,π‘§π‘š=π‘¦π‘šβˆ’π‘“2ξ€·π‘₯π‘šξ€Έπ‘“2ξ€·π‘₯π‘šξ€Έξ€·π‘₯βˆ’2π‘“π‘šξ€Έπ‘“ξ€·π‘¦π‘šξ€Έ+2𝛽𝑓2ξ€·π‘¦π‘šξ€Έπ‘“ξ€·π‘¦π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έ,(2.1) where π›½βˆˆβ„. We consider now a three-step iterative scheme composed by Chun's scheme (2.1) and a third step designed by using Newton's method and weight functions. π‘₯π‘š+1=π‘§π‘šξ€·πœ‡βˆ’π»π‘šξ€Έπ‘“ξ€·π‘§π‘šξ€Έπ‘“ξ…žξ€·π‘§π‘šξ€Έ,(2.2) where πœ‡π‘š=𝑓(π‘§π‘š)/𝑓(π‘₯π‘š) and 𝐻(𝑑) represents a real-valued function.

However, this procedure is not optimal, as it uses two new functional evaluations in the last step. So, we express π‘“ξ…ž(π‘§π‘š) as a linear combination of 𝑓[π‘¦π‘š,π‘₯π‘š], 𝑓[π‘§π‘š,π‘¦π‘š], and 𝑓[π‘§π‘š,π‘₯π‘š]. π‘“ξ…žξ€·π‘§π‘šξ€Έ=πœƒ1π‘“ξ€Ίπ‘¦π‘š,π‘₯π‘šξ€»+πœƒ2π‘“ξ€Ίπ‘§π‘š,π‘¦π‘šξ€»+ξ€·1βˆ’πœƒ1βˆ’πœƒ2ξ€Έπ‘“ξ€Ίπ‘§π‘š,π‘₯π‘šξ€»,(2.3) where πœƒ1 and πœƒ2 are real numbers.

By using (2.3), we propose the following iterative scheme: π‘¦π‘š=π‘₯π‘šβˆ’π‘“ξ€·π‘₯π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έ,π‘§π‘š=π‘¦π‘šβˆ’π‘“2ξ€·π‘₯π‘šξ€Έπ‘“2ξ€·π‘₯π‘šξ€Έξ€·π‘₯βˆ’2π‘“π‘šξ€Έπ‘“ξ€·π‘¦π‘šξ€Έ+2𝛽𝑓2ξ€·π‘¦π‘šξ€Έπ‘“ξ€·π‘¦π‘šξ€Έπ‘“ξ…žξ€·π‘₯π‘šξ€Έ,π‘₯π‘š+1=π‘§π‘šξ€·πœ‡βˆ’π»π‘šξ€Έπ‘“ξ€·π‘§π‘šξ€Έπœƒ1π‘“ξ€Ίπ‘¦π‘š,π‘₯π‘šξ€»+πœƒ2π‘“ξ€Ίπ‘§π‘š,π‘¦π‘šξ€»+ξ€·1βˆ’πœƒ1βˆ’πœƒ2ξ€Έπ‘“ξ€Ίπ‘§π‘š,π‘₯π‘šξ€»,(2.4) whose convergence analysis will be made in the following result.

Theorem 2.1. Let π‘₯βˆ— be a simple zero of a sufficiently differentiable function π‘“βˆΆπ·βŠ†β„β†’β„. If the initial point π‘₯0 is sufficiently close to π‘₯βˆ—, then the sequence {π‘₯π‘š}π‘šβ‰₯0 generated by any method of the family (2.4) converges to π‘₯βˆ—. If 𝐻(𝑑) is any function with 𝐻(0)=1, 𝐻′(0)=1, π»ξ…žξ…ž(0)<∞, and 𝛽=1/2, then the convergence order of any method of the family (2.4) is eight if and only if πœƒ1=βˆ’1, πœƒ2=1.

Proof. Let π‘’π‘š=π‘₯π‘šβˆ’π‘₯βˆ— be the error at the mth iteration and π‘π‘š=(1/π‘š!)(𝑓(π‘š)(π‘₯βˆ—)/π‘“ξ…ž(π‘₯βˆ—)),π‘š=2,3,…. By using Taylor expansions, we have 𝑓π‘₯π‘šξ€Έ=π‘“ξ…žξ€·π‘₯βˆ—π‘’ξ€Έξ€Ίπ‘š+𝑐2𝑒2π‘š+𝑐3𝑒3π‘š+𝑐4𝑒4π‘š+𝑐5𝑒5π‘š+𝑐6𝑒6π‘š+𝑐7𝑒7π‘š+𝑐8𝑒8π‘šξ€·π‘’+𝑂9π‘š,π‘“ξ€Έξ€»ξ…žξ€·π‘₯π‘šξ€Έ=π‘“ξ…žξ€·π‘₯βˆ—ξ€Έξ€Ί1+2𝑐2π‘’π‘š+3𝑐3𝑒2π‘š+4𝑐4𝑒3π‘š+5𝑐5𝑒4π‘š+6𝑐6𝑒5π‘š+7𝑐7𝑒6π‘š+8𝑐8𝑒7π‘šξ€·π‘’+𝑂8π‘š.ξ€Έξ€»(2.5) Now, from (2.5), we have π‘¦π‘š=π‘₯βˆ—+𝑐2𝑒2π‘š+ξ€·2𝑐3βˆ’2𝑐22𝑒3π‘š+ξ€·3𝑐4βˆ’3𝑐2𝑐3ξ€·βˆ’22𝑐3βˆ’2𝑐22𝑐2𝑒4π‘š+ξ€·4𝑐5βˆ’10𝑐2𝑐4βˆ’6𝑐23+20𝑐3𝑐22βˆ’8𝑐42𝑒5π‘š+ξ€·βˆ’17𝑐4𝑐3+28𝑐4𝑐22βˆ’13𝑐2𝑐5+33𝑐2𝑐23+5𝑐6βˆ’52𝑐3𝑐32+16𝑐52𝑒6π‘šξ€·π‘’+𝑂7π‘šξ€Έ,(2.6) and then, we get π‘“ξ€·π‘¦π‘šξ€Έ=π‘“ξ…žξ€·π‘₯βˆ—π‘ξ€Έξ€Ί2𝑒2+ξ€·2𝑐3βˆ’2𝑐22𝑒3π‘š+ξ€·3𝑐4βˆ’7𝑐2𝑐3+5𝑐32𝑒4π‘š+ξ€·βˆ’6𝑐23+24𝑐3𝑐22βˆ’10𝑐2𝑐4+4𝑐5βˆ’12𝑐42𝑒5+ξ€·βˆ’17𝑐4𝑐3+34𝑐4𝑐22βˆ’13𝑐2𝑐5+5𝑐6+37𝑐2𝑐23βˆ’73𝑐3𝑐32+28𝑐52𝑒6π‘šξ€·π‘’+𝑂7π‘š.ξ€Έξ€»(2.7) Combining (2.5), (2.6) and (2.7), we obtain π‘§π‘š=π‘₯βˆ—+ξ€·βˆ’π‘2𝑐3+𝑐32+2𝛽𝑐32𝑒4π‘šξ€·βˆ’2(2+6𝛽)𝑐42βˆ’2(2+3𝛽)𝑐22𝑐3+𝑐23+𝑐2𝑐4𝑒5π‘š+ξ€·ξ€·10+44π›½βˆ’4𝛽2𝑐52βˆ’6(5+14𝛽)𝑐32𝑐3+6(2+3𝛽)𝑐22𝑐4βˆ’7𝑐3𝑐4+3𝑐2ξ€·(6+8𝛽)𝑐23βˆ’π‘5𝑒6π‘šξ€·π‘’+𝑂7π‘šξ€Έ.(2.8) So, from (2.8), we get π‘“ξ€·π‘§π‘šξ€Έ=π‘“ξ…žξ€·π‘₯βˆ—ξ€Έξ€Ίξ€·(1+2𝛽)𝑐32βˆ’π‘2𝑐3𝑒4π‘šβˆ’2ξ€·ξ€·(2+6𝛽)𝑐42βˆ’2(2+3𝛽)𝑐22𝑐3+𝑐23+𝑐2𝑐4𝑒5π‘š+ξ€·ξ€·10+44π›½βˆ’4𝛽2𝑐52βˆ’6(5+14𝛽)𝑐32𝑐3+6(2+3𝛽)𝑐22𝑐4βˆ’7𝑐3𝑐4+3𝑐2ξ€·(6+8𝛽)𝑐23βˆ’π‘5𝑒6π‘šξ€·π‘’+𝑂7π‘š.ξ€Έξ€»(2.9) Using the Taylor expansion of 𝐻 around 0 and considering π»ξ…žξ…ž(0)<∞, we get π»ξ€·πœ‡π‘šξ€Έ=𝐻(0)+π»ξ…žπ‘“ξ€·π‘§(0)π‘šξ€Έπ‘“ξ€·π‘₯π‘šξ€Έξ‚€ξ€·πœ‡+π‘‚π‘šξ€Έ2=𝐻(0)+π»ξ…ž(0)𝑐2ξ€·βˆ’π‘3+𝑐22+2𝛽𝑐22𝑒3π‘š+π»ξ…ž(ξ€·0)βˆ’2𝑐2𝑐4+9𝑐3𝑐22βˆ’5𝑐42+12𝛽𝑐3𝑐22βˆ’14𝛽𝑐44βˆ’2𝑐23𝑒4π‘šξ€·π‘’+𝑂5π‘šξ€Έ.(2.10) In these terms, the error equation of the method can be expressed as π‘’π‘š+1=βˆ’(βˆ’1+𝐻(0))𝑐2ξ€·(1+2𝛽)𝑐22βˆ’π‘3𝑒4π‘š+ξ€·βˆ’ξ€·ξ€·ξ€·4+12𝛽+𝐻(0)βˆ’5+2π›½βˆ’7+πœƒ2ξ€Έ+πœƒ2𝑐42+ξ€·ξ€·8+12𝛽+𝐻(0)βˆ’9βˆ’12𝛽+πœƒ2𝑐22𝑐3+2(βˆ’1+𝐻(0))𝑐23+2(βˆ’1+𝐻(0))𝑐2𝑐4𝑒5π‘šξ€·π‘’+𝑂6π‘šξ€Έ,(2.11) which shows that the convergence order of any method of the family (2.4) is at least five if 𝐻(0)=1. Then, π‘’π‘š+1ξ€·=βˆ’βˆ’1+πœƒ2𝑐22ξ€·(1+2𝛽)𝑐22βˆ’π‘3𝑒5π‘š+𝑐2ξ€·ξ€·βˆ’5+πœƒ1+7πœƒ2βˆ’πœƒ22ξ€·+2π›½βˆ’7+πœƒ1+9πœƒ2βˆ’πœƒ22𝑐42+ξ€·10βˆ’πœƒ1ξ€·βˆ’14π›½βˆ’1+πœƒ2ξ€Έβˆ’12πœƒ2+πœƒ22𝑐22𝑐3ξ€·+3βˆ’1+πœƒ2𝑐23ξ€·+2βˆ’1+πœƒ2𝑐2𝑐4𝑒6π‘šξ€·π‘’+𝑂7π‘šξ€Έ.(2.12) and it is necessary that πœƒ1=βˆ’1 and πœƒ2=1 in order to reach order of convergence seven. Then, the error equation is π‘’π‘š+1=βˆ’π‘2π»ξ€·ξ€·ξ…ž(0)+2π›½π»ξ…žξ€Έπ‘(0)22βˆ’ξ€·βˆ’1+π»ξ…žξ€Έπ‘(0)3ξ€Έξ€·(1+2𝛽)𝑐32βˆ’π‘2𝑐3𝑒7π‘šξ€·π‘’+𝑂8π‘šξ€Έ,(2.13) and finally, if 𝛽=βˆ’1/2 and 𝐻′(0)=1, it can be concluded that the order is eight and π‘’π‘š+1=𝑐3𝑐22ξ€·2𝑐2𝑐3βˆ’π‘4+2𝑐32𝑒8π‘šξ€·π‘’+𝑂9π‘šξ€Έ.(2.14)

Remark 2.2. Any method of the family (2.4) has the efficiency index equals to 81/4β‰ˆ1.682, which is better than the Newton's method with efficiency index equals to 21/2β‰ˆ1.414and equal to BRW8, M8, and LW8.

In what follows, we give some concrete optimal iterative methods of family (2.4) for different functions 𝐻. (F1)𝐻(𝑑)=(1+𝛽𝑑)𝛾,𝛽⋅𝛾=1, where 𝛽,π›Ύβˆˆβ„. Hence we get a new eighth-order method whose last step is π‘₯π‘š+1=π‘§π‘šβˆ’ξ€·1+π›½πœ‡π‘šξ€Έπ›Ύπ‘“ξ€·π‘§π‘šξ€Έξ€Ίπ‘¦βˆ’π‘“π‘š,π‘₯π‘šξ€»ξ€Ίπ‘§+π‘“π‘š,π‘¦π‘šξ€»ξ€Ίπ‘§+π‘“π‘š,π‘₯π‘šξ€».(2.15)(F2)𝐻(𝑑)=1+(𝑑/(1+πœ†π‘‘)), where πœ†βˆˆβ„. So, π‘₯π‘š+1=π‘§π‘šβˆ’ξ‚΅πœ‡1+π‘š1+πœ†πœ‡π‘šξ‚Άπ‘“ξ€·π‘§π‘šξ€Έξ€Ίπ‘¦βˆ’π‘“π‘š,π‘₯π‘šξ€»ξ€Ίπ‘§+π‘“π‘š,π‘¦π‘šξ€»ξ€Ίπ‘§+π‘“π‘š,π‘₯π‘šξ€».(2.16)(F3)𝐻(𝑑)=1/(1βˆ’π‘‘+πœ”π‘‘2), where πœ”βˆˆβ„. Then we obtain a new scheme π‘₯π‘š+1=π‘§π‘šβˆ’ξ‚΅11βˆ’πœ‡π‘š+πœ”πœ‡2π‘šξ‚Άπ‘“ξ€·π‘§π‘šξ€Έξ€Ίπ‘¦βˆ’π‘“π‘š,π‘₯π‘šξ€»ξ€Ίπ‘§+π‘“π‘š,π‘¦π‘šξ€»ξ€Ίπ‘§+π‘“π‘š,π‘₯π‘šξ€».(2.17)

3. Numerical Results

We present some examples to illustrate the efficiency of the iterative algorithm. All computations were done using MAPLE. We have used as stopping criteria that |π‘₯π‘š+1βˆ’π‘₯π‘š|≀10βˆ’200 or |𝑓(π‘₯π‘š)|≀10βˆ’200. The test functions are listed below: (a)𝑓1(π‘₯)=π‘₯3+4π‘₯2βˆ’15;π‘₯βˆ—β‰ˆ1.6319808055661; (b)𝑓2(π‘₯)=π‘₯𝑒π‘₯2βˆ’sin2(π‘₯)+3cos(π‘₯)+5;π‘₯βˆ—β‰ˆβˆ’1.2076478271309; (c)𝑓3(π‘₯)=sin(π‘₯)βˆ’(π‘₯/2);π‘₯βˆ—β‰ˆ1.8954942670339; (d)𝑓4(π‘₯)=10π‘₯π‘’βˆ’π‘₯2βˆ’1;π‘₯βˆ—β‰ˆ1.6796306104285; (e)𝑓5(π‘₯)=cos(π‘₯)βˆ’π‘₯;π‘₯βˆ—β‰ˆ0.73908513321516; (f)𝑓6(π‘₯)=sin2(π‘₯)βˆ’π‘₯2+1;π‘₯βˆ—β‰ˆ1.4044916482153. (g)𝑓7(π‘₯)=π‘’βˆ’π‘₯+cos(π‘₯);π‘₯βˆ—β‰ˆ1.7461395304080.

We compare the classical Newtons (CN), BRW8 method with πœƒ=1; M8 scheme with 𝛽1=0, 𝛽3=0, and 𝛽2=1; LW8 method with 𝛼=1 and 𝐺(𝑑)=4𝑑, and our methods with πœ”=1, πœ†=1, 𝛽=1, and 𝛾=1.

In Table 1, the following elements appear for each test function and each iterative method: the value of the elements involved in the stopping criterium, |π‘₯π‘š+1βˆ’π‘₯π‘š| and |𝑓(π‘₯π‘š)|, the number of iterations, iter, needed to converge to the solution, and the approximated computational order of convergence 𝜌, that can be calculated by using the formula (see [17]) ξ€·||π‘₯𝜌=lnπ‘š+1βˆ’π‘₯π‘š||/||π‘₯π‘šβˆ’π‘₯π‘šβˆ’1||ξ€Έξ€·||π‘₯lnπ‘šβˆ’π‘₯π‘šβˆ’1||/||π‘₯π‘šβˆ’1βˆ’π‘₯π‘šβˆ’2||ξ€Έ,(3.1) where π‘₯π‘š+1,π‘₯π‘š,π‘₯π‘šβˆ’1, and π‘₯π‘šβˆ’2 are iterations close to a zero of the nonlinear equation.

4. Conclusions

In this work, we have constructed a new general eighth-order iterative family of methods without memory for solving nonlinear equations. Convergence analysis shows that the order of convergence of the methods is eight. Per iteration the present methods require three evaluations of the function and one evaluation of its first derivative and therefore have the efficiency index equal to 81/4=1.682. Some of the obtained methods were also compared in their performance and efficiency to various other iteration methods of the same order, and it was observed that they demonstrate at least equal behavior.

Acknowledgments

The authors would like to thank the referee for the valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnología MTM2011-28636-C02-02 and by Vicerrectorado de Investigación, Universitat Politècnica de València PAID-06-2010-2285.