Abstract

The main purpose of this paper is to investigate the convergence of the Euler method to stochastic differential equations with piecewise continuous arguments (SEPCAs). The classical Khasminskii-type theorem gives a powerful tool to examine the global existence of solutions for stochastic differential equations (SDEs) without the linear growth condition by the use of the Lyapunov functions. However, there is no such result for SEPCAs. Firstly, this paper shows SEPCAs which have nonexplosion global solutions under local Lipschitz condition without the linear growth condition. Then the convergence in probability of numerical solutions to SEPCAs under the same conditions is established. Finally, an example is provided to illustrate our theory.

1. Introduction

Stochastic modeling has come to play an important role in many branches of science and industry. Such models have been used with great success in a variety of application areas, including biology, epidemiology, mechanics, economics, and finance. Most stochastic differential equations are nonlinear and cannot be solved explicitly, but it is very important to research the existence and uniqueness of solution of stochastic differential equations. Many authors have studied the problem of SDEs. The classical existence-and-uniqueness theorem requires the coefficients 𝑓(π‘₯(𝑑)) and 𝑔(π‘₯(𝑑)) to satisfy the local Lipschitz condition and the linear growth condition (see [1]). However, there are many SDEs that do not satisfy the linear growth condition, so more general conditions have been introduced to replace theirs. Khasminskii [2] has studied Khasminskii's test for SDEs which are the most powerful conditions. Similarly, the classical existence-and-uniqueness theorem for stochastic differential delay equations (SDDEs) requires the coefficients 𝑓(π‘₯(𝑑),π‘₯(π‘‘βˆ’πœ)) and 𝑔(π‘₯(𝑑),π‘₯(π‘‘βˆ’πœ)) to satisfy the local Lipschitz condition and the linear growth condition (see [3–6]). Mao [7] has proved Khasminskii-type theorem, and this is a natural generalization of the classical Khasminskii test.

In recent years, differential equations with piecewise continuous arguments (EPCAs) had attracted much attention, and many useful conclusions were obtained. These systems have applications in certain biomedical models, control systems with feedback delay in the work of L. Cooke and J. Wiener [8]. The general theory and basic results for EPCAs have by now been thoroughly investigated in the book of Wiener [9]. A typical EPCA contains arguments that are constant on certain intervals. The solutions are determined by a finite set of initial data, rather than by an initial function, as in the case of general functional differential equation. A solution is defined as a continuous, sectionally smooth function that satisfies the equation within these intervals. Continuity of a solution at a point joining any two consecutive intervals leads to recursion relations for the solution at such points. Hence, EPCAs represent a hybrid of continuous and discrete dynamical systems and combine the properties of both differential and difference equations.

However, up to now, there are few people who have considered the influence of noise to EPCAs. Actually, the environment, and accidental events may greatly influence the systems. Thus, analyzing SEPCAs is an interesting topic both in theory and applications. In this paper, we give the Khasminskii-type theorems for SEPCAs, which shows that SEPCAs have nonexplosion global solutions under local Lipschitz condition without the linear growth condition.

On the other hand, there is in general no explicit solution to an SEPCA, whence numerical solutions are required in practice. Numerical solutions to SDEs have been discussed under the local Lipschitz condition and the linear growth condition by many authors (see [5]). Mao [10] gives the convergence in probability of numerical solutions to SDDEs under Khasminskii-Type conditions. Dai and Liu [11] give the mean-square stability of the numerical solutions of linear stochastic differential equations with piecewise continuous arguments. However, SEPCAs do not have the convergence results. The other main aim of this paper is to establish convergence of numerical solution for SEPCAs under the differential conditions.

The paper is organized as follows. In Section 2, we introduce necessary notations and Euler method. In Section 3, we obtain the existence and uniqueness of solution to stochastic differential equations with piecewise continuous arguments under Khasminskii-type conditions. Then the convergence in probability of numerical solutions to stochastic differential equations with piecewise continuous arguments under the same conditions is established. Finally, an example is provided to illustrate our theory.

2. Preliminary Notation and Euler Method

In this paper, unless otherwise specified, let |π‘₯| be the Euclidean norm in π‘₯βˆˆπ‘…π‘›. If 𝐴 is a vector or matrix, its transpose is defined by 𝐴𝑇. If 𝐴 is a matrix, its trace norm is defined by √|𝐴|=trace(𝐴𝑇𝐴). For simplicity, we also have to denote by π‘Žβˆ§π‘=min{π‘Ž,𝑏},π‘Žβˆ¨π‘=max{π‘Ž,𝑏}.

Let (Ξ©,β„±,𝑃) be a complete probability space with a filtration {ℱ𝑑}𝑑β‰₯0, satisfying the usual conditions. β„’1([0,∞),𝑅𝑛) and β„’2([0,∞),𝑅𝑛) denote the family of all real-valued ℱ𝑑-adapted process 𝑓(𝑑)𝑑β‰₯0, such that for every βˆ«π‘‡>0,𝑇0|𝑓(𝑑)|𝑑𝑑<∞ almost surely and βˆ«π‘‡0|𝑓(𝑑)|2𝑑𝑑<∞ almost surely, respectively. For any π‘Ž,π‘βˆˆπ‘… with π‘Ž<𝑏, denote 𝐢([π‘Ž,𝑏];𝑅𝑛) as the family of continuous functions πœ™ from [π‘Ž,𝑏] to 𝑅𝑛 with the norm β€–πœ™β€–=supπ‘Žβ‰€πœƒβ‰€π‘|πœ™(πœƒ)|. Denote 𝐢𝑏ℱ𝑑([π‘Ž,𝑏];𝑅𝑛) as the family of all bounded ℱ𝑑-measurable 𝐢([π‘Ž,𝑏];𝑅𝑛)-valued random variables. Let 𝐡(𝑑)=(𝐡1(𝑑),…,𝐡𝑑(𝑑))𝑇 be a 𝑑-dimensional Brownian motion defined on the probability space. Let 𝐢2(𝑅𝑛;𝑅+) denote the family of all continuous nonnegative functions 𝑉(π‘₯) defined on 𝑅𝑛 such that they are continuously twice differentiable in π‘₯. Given π‘‰βˆˆπΆ2(𝑅𝑛;𝑅+), we define the operator πΏπ‘‰βˆΆπ‘…π‘›Γ—π‘…π‘›β†’π‘… by 𝐿𝑉(π‘₯,𝑦)=𝑉π‘₯1(π‘₯)𝑓(π‘₯,𝑦)+2𝑔trace𝑇(π‘₯,𝑦)𝑉π‘₯π‘₯ξ€»,(π‘₯)𝑔(π‘₯,𝑦)(2.1) where 𝑉π‘₯ξ‚΅(π‘₯)=πœ•π‘‰(π‘₯)πœ•π‘₯1,…,πœ•π‘‰(π‘₯)πœ•π‘₯𝑛,𝑉π‘₯π‘₯ξ‚΅πœ•(π‘₯)=2𝑉(π‘₯)πœ•π‘₯π‘–πœ•π‘₯𝑗𝑛×𝑛.(2.2) Let us emphasize that 𝐿𝑉 is defined on 𝑅𝑛×𝑅𝑛, while 𝑉 is only defined on 𝑅𝑛.

Throughout this paper, we consider stochastic differential equations with piecewise continuous arguments [𝑑][𝑑]𝑑π‘₯(𝑑)=𝑓(π‘₯(𝑑),π‘₯())𝑑𝑑+𝑔(π‘₯(𝑑),π‘₯())𝑑𝐡(𝑑)βˆ€π‘‘β‰₯0,(2.3) with initial data π‘₯(0)=𝑐0, where π‘“βˆΆπ‘…π‘›Γ—π‘…π‘›β†’π‘…π‘›,π‘”βˆΆπ‘…π‘›Γ—π‘…π‘›β†’π‘…π‘›Γ—π‘‘,𝑐0 is a vector, and [β‹…] denotes the greatest-integer function. By the definition of stochastic differential, this equation is equivalent to the following stochastic integral equation: ξ€œπ‘₯(𝑑)=π‘₯(0)+𝑑0[𝑠]ξ€œπ‘“(π‘₯(𝑠),π‘₯())𝑑𝑠+𝑑0[𝑠]𝑔(π‘₯(𝑠),π‘₯())𝑑𝐡(𝑠)βˆ€π‘‘β‰₯0.(2.4) Moreover, we also require the coefficients 𝑓(π‘₯(𝑑),π‘₯([𝑑])) and 𝑔(π‘₯(𝑑),π‘₯([𝑑])) to be sufficiently smooth.

To be precise, let us state the following conditions.(H1) (The local Lipschitz condition) For every integer 𝑖β‰₯1, there exists a positive constant 𝐿𝑖 such that |||𝑓(π‘₯,𝑦)βˆ’π‘“βˆ’π‘₯,βˆ’π‘¦ξ‚|||2∨|||𝑔(π‘₯,𝑦)βˆ’π‘”βˆ’π‘₯,βˆ’π‘¦ξ‚|||2≀𝐿𝑖|||π‘₯βˆ’βˆ’π‘₯|||2+|||π‘¦βˆ’βˆ’π‘¦|||2ξ‚Ά,(2.5) for those π‘₯,βˆ’π‘₯,𝑦,βˆ’π‘¦βˆˆπ‘…π‘› with |π‘₯|∨|βˆ’π‘₯|∨|𝑦|∨|βˆ’π‘¦|≀𝑖.(H2) (Linear growth condition) There exists a positive constant 𝐾 such that ||||𝑓(π‘₯,𝑦)2∨||||𝑔(π‘₯,𝑦)2≀𝐾1+|π‘₯|2+||𝑦||2,(2.6) for all (π‘₯,𝑦)βˆˆπ‘…π‘›Γ—π‘…π‘›.(H3) There are a function π‘‰βˆˆπΆ2(𝑅𝑛;𝑅+) and a positive constant 𝛼 such that liminf|π‘₯|β†’βˆžπ‘‰(π‘₯)=∞,(2.7)𝐿𝑉(π‘₯,𝑦)≀𝛼(1+𝑉(π‘₯)+𝑉(𝑦)),(2.8) for all (π‘₯,𝑦)βˆˆπ‘…π‘›Γ—π‘…π‘›.

Let us first give the definition of the solution.

Definition 2.1 (see [11]). An 𝑅𝑛-valued stochastic process {π‘₯(𝑑)} is called a solution of (2.3) on [0,∞) if it has the following properties: (1){π‘₯(𝑑)} is continuous on [0,∞) and ℱ𝑑-adapted, (2){𝑓(π‘₯(𝑑),π‘₯([𝑑]))}βˆˆβ„’1([0,∞),𝑅𝑛) and {𝑔(π‘₯(𝑑),π‘₯([𝑑]))}βˆˆβ„’2([0,∞),𝑅𝑛×𝑑),(3)equation (2.4) is satisfied on each interval [𝑛,𝑛+1)βŠ‚[0,∞) with integral end-points almost surely. A solution {π‘₯(𝑑)} is said to be unique if any other solution {βˆ’π‘₯(𝑑)} is indistinguishable from {π‘₯(𝑑)}, that is, 𝑃π‘₯(𝑑)=βˆ’π‘₯[(𝑑)βˆ€π‘‘βˆˆ0,∞)=1.(2.9)Let β„Ž=1/π‘š be a given stepsize with integer π‘šβ‰₯1, and let the gridpoints 𝑑𝑛 be defined by 𝑑𝑛=π‘›β„Ž(𝑛=0,1,2,…). For simplicity, we assume that 𝑇=π‘β„Ž. We consider the Euler-Maruyama method to (2.3), 𝑦𝑛+1=𝑦𝑛𝑦+𝑓𝑛,π‘¦β„Ž([])ξ€Έξ€·π‘¦π‘›β„Žβ„Ž+𝑔𝑛,π‘¦β„Ž([])ξ€Έπ‘›β„ŽΞ”π΅π‘›,(2.10) for 𝑛=0,1,2,…, where Δ𝐡𝑛=𝐡(𝑑𝑛)βˆ’π΅(π‘‘π‘›βˆ’1),π‘¦β„Ž([π‘›β„Ž]) is approximation to the exact solution π‘₯([π‘›β„Ž]). Let 𝑛=π‘˜π‘š+𝑙(π‘˜=0,1,2,…,𝑙=0,1,2,…,π‘šβˆ’1). The adaptation of the Euler method to (2.3) leads to a numerical process of the following type: π‘¦π‘˜π‘š+𝑙+1=π‘¦π‘˜π‘š+𝑙𝑦+π‘“π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€Έξ€·π‘¦β„Ž+π‘”π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€ΈΞ”π΅π‘˜π‘š+𝑙,(2.11) where Ξ”π΅π‘˜π‘š+𝑙=𝐡(π‘‘π‘˜π‘š+𝑙)βˆ’π΅(π‘‘π‘˜π‘š+π‘™βˆ’1),π‘¦π‘˜π‘š+𝑙 and π‘¦π‘˜π‘š are approximations to the exact solution π‘₯(π‘‘π‘˜π‘š+𝑙) and π‘₯([π‘‘π‘˜π‘š+𝑙]), respectively. The continuous Euler-Maruyama approximate solution is defined by ξ€œπ‘¦(𝑑)=𝑦(0)+𝑑0[𝑠]ξ€œπ‘“(𝑧(𝑠),𝑧())𝑑𝑠+𝑑0[𝑠]𝑔(𝑧(𝑠),𝑧())𝑑𝐡(𝑠),(2.12) where 𝑧(𝑑)=π‘¦π‘˜π‘š+𝑙 and 𝑧([𝑑])=π‘¦π‘˜π‘š for π‘‘βˆˆ[π‘‘π‘˜π‘š+𝑙,π‘‘π‘˜π‘š+𝑙+1). It is not difficult to see that 𝑦(π‘‘π‘˜π‘š+𝑙)=𝑧(π‘‘π‘˜π‘š+𝑙)=π‘¦π‘˜π‘š+𝑙 for π‘˜=0,1,2,…,𝑙=0,1,2,…,π‘šβˆ’1. For sufficiently large integer 𝑖, define the stopping times πœ‚π‘–=inf{𝑑β‰₯0∢|π‘₯(𝑑)|β‰₯𝑖},πœƒπ‘–=inf{𝑑β‰₯0∢|𝑦(𝑑)|β‰₯𝑖}.

3. Convergence in Probability of the Euler-Maruyama Method

In this section, we concentrate on (2.3) under the local Lipschitz condition (H1) without the linear growth condition (H2) to establish the generalized existence and uniqueness theorem for stochastic differential equations with piecewise continuous arguments. We then give the convergence in probability of the EM method to (2.3) under the local Lipschitz condition (H1) and some additional conditions (H3).

Theorem 3.1. Under the conditions (H1) and (H3), there is a unique global solution π‘₯(𝑑) to (2.3) with initial data π‘₯(0)=𝑐0 on π‘‘βˆˆ[0,∞). Moreover, the solution has the property that 𝐸𝑉(π‘₯(𝑑))<∞,forany𝑑β‰₯0.(3.1)

Proof. Applying the standard truncation technique to (2.3), we obtain the unique maximal local solution π‘₯(𝑑) exists on [0,πœ‚π‘’) under the local Lipschitz condition in a similar way as the proof of [10, Theorem 3.15, page 91], where πœ‚π‘’ is the explosion time. For each integer 𝑖β‰₯|𝑐0|, define the stopping time πœ‚π‘–ξ€½ξ€Ί=infπ‘‘βˆˆ0,πœ‚π‘’ξ€ΈβˆΆ||π‘₯||ξ€Ύ(𝑑)β‰₯𝑖.(3.2) Clearly, πœ‚π‘– is increasing as π‘–β†’βˆž. We denote that πœ‚βˆž=limπ‘–β†’βˆžπœ‚π‘– and infβˆ…=∞. Hence, πœ‚βˆžβ‰€πœ‚π‘’β€‰β€‰almost surely. If we can obtain πœ‚βˆž=βˆžβ€‰β€‰almost surely, then πœ‚π‘’=βˆžβ€‰β€‰almost surely.
In what follows, we will prove πœ‚βˆž=βˆžβ€‰β€‰almost surely and assertion (3.1). By the ItΓ΄ formula and condition (2.8), we derive that [𝑑]𝑑𝑉(π‘₯(𝑑))=𝐿𝑉(π‘₯(𝑑),π‘₯())𝑑𝑑+𝑉π‘₯[𝑑][[𝑑]](π‘₯(𝑑))𝑔(π‘₯(𝑑),π‘₯())𝑑𝐡(𝑑)≀𝛼1+𝑉(π‘₯(𝑑))+𝑉(π‘₯())𝑑𝑑+𝑉π‘₯[𝑑](π‘₯(𝑑))𝑔(π‘₯(𝑑),π‘₯())𝑑𝐡(𝑑),(3.3) for 0≀𝑑<πœ‚βˆž. Now, for 𝑑1∈[0,1), we can integrate both sides of (3.3) from 0 to πœ‚π‘–βˆ§π‘‘1, 𝑉π‘₯ξ€·πœ‚π‘–βˆ§π‘‘1[]ξ€œξ€Έξ€Έβ‰€π‘‰(π‘₯(0))+𝛼1+𝑉(π‘₯(0))+π›Όπœ‚π‘–βˆ§π‘‘10π‘‰ξ€œ(π‘₯(𝑑))𝑑𝑑+πœ‚π‘–βˆ§π‘‘10𝑉π‘₯[𝑑](π‘₯(𝑑))𝑔(π‘₯(𝑑),π‘₯())𝑑𝐡(𝑑).(3.4) We take the expectations in both sides of (3.4), ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘1[]ξ€œξ€Έξ€Έβ‰€π‘‰(π‘₯(0))+𝛼1+𝑉(π‘₯(0))+π›ΌπΈπœ‚π‘–βˆ§π‘‘10𝑉(π‘₯(𝑑))𝑑𝑑≀𝛽1ξ€œ+π›ΌπΈπœ‚π‘–βˆ§π‘‘10𝑉(π‘₯(𝑑))𝑑𝑑,(3.5) where 𝛽1[]=𝑐=𝑉(π‘₯(0))+𝛼1+𝑉(π‘₯(0))(1+𝛼)𝑉0ξ€Έ+𝛼<∞.(3.6) It is easy to compute ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘1≀𝛽1ξ€œ+π›ΌπΈπœ‚π‘–βˆ§π‘‘10𝑉(π‘₯(𝑑))𝑑𝑑=𝛽1ξ€œ+𝛼𝑑10ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘ξ€Έξ€Έπ‘‘π‘‘.(3.7) Now the Gronwall inequality yields that ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘1≀𝛽1𝑒𝛼𝑑1≀𝛽1𝑒𝛼,0≀𝑑1<1.(3.8) So we have ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§1ξ€Έξ€Έ=lim𝑑1β†’1ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘1≀𝛽1𝑒𝛼.(3.9) Defining 𝛾𝑖=inf|π‘₯|β‰₯𝑖||𝑐𝑉(π‘₯),βˆ€π‘–β‰₯0||,(3.10) denoting 𝐼𝐴 as the indicator function of a set 𝐴, we compute 𝛽1𝑒𝛼π‘₯ξ€·πœ‚β‰₯𝐸𝑉𝑖𝑉π‘₯ξ€·πœ‚βˆ§1ξ€Έξ€Έβ‰₯𝐸𝑖𝐼{πœ‚π‘–β‰€1}ξ€Έβ‰₯π›Ύπ‘–π‘ƒξ€·πœ‚π‘–ξ€Έ.≀1(3.11) Letting π‘–β†’βˆž, we have that 𝑃(πœ‚βˆžβ‰€1)=0, namely, π‘ƒξ€·πœ‚βˆžξ€Έ>1=1.(3.12) By (3.8) and (3.12), ξ€·π‘₯𝑑𝐸𝑉1≀𝛽1𝑒𝛼,0≀𝑑1≀1.(3.13) Now let us prove πœ‚βˆž>2, for 𝑑2∈[1,2), and we can integrate both sides of (3.3) from 1 to πœ‚π‘–βˆ§π‘‘2 and take the expectations ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘2[]ξ€œξ€Έξ€Έβ‰€πΈπ‘‰(π‘₯(1))+𝛼1+𝐸𝑉(π‘₯(1))+π›ΌπΈπœ‚π‘–βˆ§π‘‘21𝑉(π‘₯(𝑑))𝑑𝑑≀𝛽2ξ€œ+𝛼𝑑21ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘ξ€Έξ€Έπ‘‘π‘‘,(3.14) where 𝛽2≀𝛽1𝑒𝛼+𝛼1+𝛽1𝑒𝛼<∞.(3.15) Now the Gronwall inequality yields that ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘2≀𝛽2𝑒𝛼(𝑑2βˆ’1)≀𝛽2𝑒𝛼,1≀𝑑2<2.(3.16) Hence, we have ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§2ξ€Έξ€Έ=lim𝑑1β†’2ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘2≀𝛽2𝑒𝛼.(3.17) By (3.10) and (3.17), we compute 𝛽2𝑒𝛼π‘₯ξ€·πœ‚β‰₯𝐸𝑉𝑖𝑉π‘₯ξ€·πœ‚βˆ§2ξ€Έξ€Έβ‰₯𝐸𝑖𝐼{πœ‚π‘–β‰€2}ξ€Έβ‰₯π›Ύπ‘–π‘ƒξ€·πœ‚π‘–ξ€Έ.≀2(3.18) Letting π‘–β†’βˆž, we have that 𝑃(πœ‚βˆžβ‰€2)=0, namely, π‘ƒξ€·πœ‚βˆžξ€Έ>2=1.(3.19) From (3.16) and (3.19), we yield ξ€·π‘₯𝑑𝐸𝑉2≀𝛽2𝑒𝛼,1≀𝑑2≀2.(3.20) Repeating this procedure, we can show that, for any integer 𝑗β‰₯1,πœ‚βˆž>𝑗  almost surely, ξ€·π‘₯𝑑𝐸𝑉𝑗≀𝛽𝑗𝑒𝛼,π‘—βˆ’1≀𝑑𝑗≀𝑗,(3.21) where π›½π‘—β‰€π›½π‘—βˆ’1𝑒𝛼+𝛼1+π›½π‘—βˆ’1𝑒𝛼<∞.(3.22) By (3.13), (3.20), and (3.21), we obtain 𝐸𝑉(π‘₯(𝑑))≀𝛽𝑗𝑒𝛼<∞,0≀𝑑≀𝑗.(3.23) Therefore, we must have πœ‚βˆž=∞ almost surely as well as the required assertion (3.1). The proof is completed.

Theorem 3.2. Under the conditions (H1) and (H3), if πœ€βˆˆ(0,1) and 𝑇>0, then there exists a sufficiently large integer ̂𝑖, dependent on πœ€ and 𝑇 such that π‘ƒξ€·πœ‚π‘–ξ€ΈΜ‚β‰€π‘‡β‰€πœ€,βˆ€π‘–β‰₯𝑖.(3.24)

Proof. By Theorem 3.1, we have ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§π‘‘ξ€Έξ€Έβ‰€π›½π‘—π‘’π›Ό<∞,0≀𝑑≀𝑗.(3.25) Choose 𝑗 large enough for 𝑗>𝑇. From (3.25), we get ξ€·π‘₯ξ€·πœ‚πΈπ‘‰π‘–βˆ§([𝑇])+1≀𝛽[𝑇]+1𝑒𝛼<∞.(3.26) It follows from (3.10) and (3.26) that 𝛽[𝑇]+1𝑒𝛼π‘₯ξ€·πœ‚β‰₯πΈπ‘‰π‘–βˆ§([𝑇])𝑉π‘₯ξ€·πœ‚+1ξ€Έξ€Έβ‰₯𝐸𝑖𝐼{πœ‚π‘–β‰€[𝑇]+1}ξ€Έβ‰₯π›Ύπ‘–π‘ƒξ€·πœ‚π‘–β‰€[𝑇]ξ€Έ,+1(3.27) while by (H3), π›Ύπ‘–β†’βˆž as π‘–β†’βˆž. Thus, there is a sufficiently large integer ̂𝑖 such that 𝛾𝑖β‰₯𝛽[𝑇]+1π‘’π›Όπœ€Μ‚,βˆ€π‘–β‰₯𝑖.(3.28) Therefore, we get that π‘ƒξ€·πœ‚π‘–ξ€Έξ€·πœ‚β‰€π‘‡β‰€π‘ƒπ‘–β‰€[𝑇]≀𝛽+1[𝑇]+1𝑒𝛼𝛾𝑖<πœ€.(3.29) The proof is completed.

The following lemma shows that both 𝑦(𝑑) and 𝑧(𝑑) are close to each other.

Lemma 3.3. Under the condition (H1), let 𝑇>0 be arbitrary. Then 𝐸sup0β‰€π‘‘β‰€π‘‡βˆ§πœƒπ‘–||||𝑦(𝑑)βˆ’π‘§(𝑑)2ξƒͺ≀𝐢1(𝑖)β„Ž1/2,(3.30) where 𝐢1(𝑖)=4(2𝑖2𝐿𝑖+|𝑓(0,0)|2∨|𝑔(0,0)|2√)(1+(163/3)𝑑(𝑇+1)1/2).

Proof. For π‘‘βˆˆ[0,π‘‡βˆ§πœƒπ‘–), there are two integers π‘˜ and 𝑙 such that π‘‘βˆˆ[π‘‘π‘˜π‘š+𝑙,π‘‘π‘˜π‘š+𝑙+1). So we compute ||||𝑦(𝑑)βˆ’π‘§(𝑑)2=||||ξ€œπ‘‘π‘‘π‘˜π‘š+𝑙[𝑠]ξ€œπ‘“(𝑧(𝑠),𝑧())𝑑𝑠+π‘‘π‘‘π‘˜π‘š+𝑙[𝑠]||||𝑔(𝑧(𝑠),𝑧())𝑑𝐡(𝑠)2=||||ξ€œπ‘‘π‘‘π‘˜π‘š+π‘™π‘“ξ€·π‘¦π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€Έξ€œπ‘‘π‘ +π‘‘π‘‘π‘˜π‘š+π‘™π‘”ξ€·π‘¦π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€Έ||||𝑑𝐡(𝑠)2=||π‘“ξ€·π‘¦π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€Έξ€·π‘‘βˆ’π‘‘π‘˜π‘š+𝑙𝑦+π‘”π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€·π‘‘ξ€Έξ€·π΅(𝑑)βˆ’π΅π‘˜π‘š+𝑙||ξ€Έξ€Έ2||𝑓𝑦≀2π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€Έ||2β„Ž2||𝑔𝑦+2π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€Έ||2||𝑑𝐡(𝑑)βˆ’π΅π‘˜π‘š+𝑙||2,(3.31) since ||π‘“ξ€·π‘¦π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€Έ||2||𝑓𝑦≀2π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€Έ||βˆ’π‘“(0,0)2||||+2𝑓(0,0)2≀2𝐿𝑖||π‘¦π‘˜π‘š+𝑙||2+||π‘¦π‘˜π‘š||2||||+2𝑓(0,0)2≀22𝑖2𝐿𝑖+||||𝑓(0,0)2.(3.32) Similarly, we obtain that ||π‘”ξ€·π‘¦π‘˜π‘š+𝑙,π‘¦π‘˜π‘šξ€Έ||2≀22𝑖2𝐿𝑖+||||𝑔(0,0)2.(3.33) Substituting (3.32) and (3.33) into (3.31) gives ||||𝑦(𝑑)βˆ’π‘§(𝑑)2ξ‚€β„Žβ‰€πΆ2+||𝑑𝐡(𝑑)βˆ’π΅π‘˜π‘š+𝑙||2,(3.34) where 𝐢=4(2𝑖2𝐿𝑖+|𝑓(0,0)|2∨|𝑔(0,0)|2). Let 𝑛𝑑=π‘˜π‘š+𝑙 for π‘‘βˆˆ[π‘‘π‘˜π‘š+𝑙,π‘‘π‘˜π‘š+𝑙+1), then we have that 𝐸sup0β‰€π‘‘β‰€π‘‡βˆ§πœƒπ‘–||𝑑𝐡(𝑑)βˆ’π΅π‘›π‘‘ξ€Έ||2ξƒͺ≀𝑑𝑖=1𝐸sup0β‰€π‘‘β‰€π‘‡βˆ§πœƒπ‘–||𝐡𝑖(𝑑)βˆ’π΅π‘–ξ€·π‘‘π‘›π‘‘ξ€Έ||2ξƒͺ≀𝑑𝑖=1𝐸sup𝑒=0,1,2,…,𝑁sup𝑑𝑒≀𝑑≀𝑑𝑒+1βˆ§π‘‡||𝐡𝑖(𝑑)βˆ’π΅π‘–ξ€·π‘‘π‘’ξ€Έ||2ξƒͺ≀𝑑𝑖=1𝐸sup𝑒=0,1,2,…,𝑁sup𝑑𝑒≀𝑑≀𝑑𝑒+1βˆ§π‘‡||𝐡𝑖(𝑑)βˆ’π΅π‘–ξ€·π‘‘π‘’ξ€Έ||4ξƒͺξƒ­1/2,(3.35) while by the Doob martingale inequality, we have 𝐸sup𝑒=0,1,2,…,𝑁sup𝑑𝑒≀𝑑≀𝑑𝑒+1βˆ§π‘‡||𝐡𝑖(𝑑)βˆ’π΅π‘–ξ€·π‘‘π‘’ξ€Έ||4ξƒͺ≀𝑁𝑒=0𝐸sup𝑑𝑒≀𝑑≀𝑑𝑒+1βˆ§π‘‡||𝐡𝑖(𝑑)βˆ’π΅π‘–ξ€·π‘‘π‘’ξ€Έ||4ξƒͺ≀434𝑁𝑒=0𝐸||𝐡𝑖𝑑𝑒+1ξ€Έβˆ§π‘‡βˆ’π΅π‘–ξ€·π‘‘π‘’ξ€Έ||4≀25627𝑁𝑒=0β„Ž2≀25627(𝑇+1)β„Ž.(3.36) Substituting (3.36) into (3.35) yields 𝐸sup0β‰€π‘‘β‰€π‘‡βˆ§πœƒπ‘–||𝑑𝐡(𝑑)βˆ’π΅π‘›π‘‘ξ€Έ||2ξƒͺ≀𝑑𝑖=1ξ‚€25627(𝑇+1)β„Ž1/2=√1639𝑑(𝑇+1)1/2β„Ž1/2.(3.37) Thus, we obtain 𝐸sup0β‰€π‘‘β‰€π‘‡βˆ§πœƒπ‘–||||𝑦(𝑑)βˆ’π‘§(𝑑)2ξƒͺβ‰€πΆβ„Ž2√+𝐢1639𝑑(𝑇+1)1/2β„Ž1/2ξƒ©βˆšβ‰€πΆ1+1633𝑑(𝑇+1)1/2ξƒͺβ„Ž1/2≀𝐢1(𝑖)β„Ž1/2,(3.38) where 𝐢1(𝑖)=4(2𝑖2𝐿𝑖+|𝑓(0,0)|2∨|𝑔(0,0)|2√)(1+(163/3)𝑑(𝑇+1)1/2). The proof is completed.

Lemma 3.4. Under the condition (H1), for any 𝑇>0, there exists a positive constant 𝐢2(𝑖) dependent on 𝑖 and independent of β„Ž such that 𝐸sup0≀𝑑≀𝑇||π‘₯ξ€·π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘¦π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2≀𝐢2(𝑖)β„Ž1/2,(3.39) where 𝐢2(𝑖)=8𝑇(𝑇+4)𝐿𝑖𝐢1(𝑖)𝑒8𝑇(𝑇+4)𝐿𝑖.

Proof. It follows from (2.4) and (2.12) that ||π‘₯ξ€·π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘¦π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2||||ξ€œβ‰€2π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–0[𝑠][𝑠]||||𝑓(π‘₯(𝑠),π‘₯())βˆ’π‘“(𝑧(𝑠),𝑧())𝑑𝑠2||||ξ€œ+2π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–0[𝑠][𝑠]||||𝑔(π‘₯(𝑠),π‘₯())βˆ’π‘”(𝑧(𝑠),𝑧())𝑑𝐡(𝑠)2.(3.40) By the HΓΆlder inequality, we obtain ||π‘₯ξ€·π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘¦π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2ξ€œβ‰€2𝑇𝑑0||𝑓π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€·π‘§ξ€·ξ€»ξ€Έξ€Έβˆ’π‘“π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||ξ€»ξ€Έξ€Έ2||||ξ€œπ‘‘π‘ +2𝑑0𝑔π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€·π‘§ξ€·ξ€»ξ€Έξ€Έβˆ’π‘”π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||||𝑑𝐡(𝑠)2.(3.41) This implies that for any 0≀𝑑1≀𝑇, 𝐸sup0≀𝑑≀𝑑1ξ‚€||π‘₯ξ€·π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘¦π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2≀2𝑇𝐸sup0≀𝑑≀𝑑1ξ€œπ‘‘0||𝑓π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€·π‘§ξ€·ξ€»ξ€Έξ€Έβˆ’π‘“π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||ξ€»ξ€Έξ€Έ2𝑑𝑠+2𝐸sup0≀𝑑≀𝑑1||||ξ€œπ‘‘0𝑔π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€·π‘§ξ€·ξ€»ξ€Έξ€Έβˆ’π‘”π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||||𝑑𝐡(𝑠)2ξƒ­.(3.42) By Doob martingale inequality, it is not difficult to show that 𝐸sup0≀𝑑≀𝑑1ξ‚€||π‘₯ξ€·π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘¦π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2ξ‚ξ€œβ‰€2𝑇𝐸𝑑10||𝑓π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€·π‘§ξ€·ξ€»ξ€Έξ€Έβˆ’π‘“π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||ξ€»ξ€Έξ€Έ2ξ€œπ‘‘π‘ +8𝐸𝑑10||𝑔π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€·π‘§ξ€·ξ€»ξ€Έξ€Έβˆ’π‘”π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||ξ€»ξ€Έξ€Έ2𝑑𝑠.(3.43) Note from (H1) and Lemma 3.3 that πΈξ€œπ‘‘10||𝑓π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€·π‘§ξ€·ξ€»ξ€Έξ€Έβˆ’π‘“π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||ξ€»ξ€Έξ€Έ2π‘‘π‘ β‰€πΏπ‘–πΈξ€œπ‘‘10||π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘§π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2+||π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€»ξ€Έβˆ’π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||ξ€»ξ€Έ2𝑑𝑠≀2πΏπ‘–πΈξ€œπ‘‘10||π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘¦π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2𝑑𝑠+2πΏπ‘–πΈξ€œπ‘‘10||π‘¦ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘§π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2𝑑𝑠+2πΏπ‘–πΈξ€œπ‘‘10||π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€»ξ€Έβˆ’π‘¦ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||ξ€»ξ€Έ2𝑑𝑠+2πΏπ‘–πΈξ€œπ‘‘10||π‘¦ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€»ξ€Έβˆ’π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||ξ€»ξ€Έ2𝑑𝑠≀4πΏπ‘–ξ€œπ‘‘10𝐸sup0β‰€π‘‘β‰€π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||||π‘₯(𝑑)βˆ’π‘¦(𝑑)2𝑑𝑠+4𝐿𝑖𝑇𝐢1(𝑖)β„Ž1/2.(3.44) Similarly, we obtain that πΈξ€œπ‘‘10||𝑔π‘₯ξ€·π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘₯ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€·π‘§ξ€·ξ€»ξ€Έξ€Έβˆ’π‘”π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ,π‘§ξ€·ξ€Ίπ‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||ξ€»ξ€Έξ€Έ2𝑑𝑠≀4πΏπ‘–ξ€œπ‘‘10𝐸sup0β‰€π‘‘β‰€π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||||π‘₯(𝑑)βˆ’π‘¦(𝑑)2𝑑𝑠+4𝐿𝑖𝑇𝐢1(𝑖)β„Ž1/2.(3.45) Substituting (3.44) and (3.45) into (3.43) gives 𝐸sup0≀𝑑≀𝑑1ξ‚€||π‘₯ξ€·π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘¦π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2≀8(𝑇+4)πΏπ‘–ξ€œπ‘‘10𝐸sup0β‰€π‘‘β‰€π‘ βˆ§πœ‚π‘–βˆ§πœƒπ‘–||π‘₯||(𝑑)βˆ’π‘¦(𝑑)2𝑑𝑠+8(𝑇+4)𝐿𝑖𝑇𝐢1(𝑖)β„Ž1/2.(3.46) By the Gronwall inequality, we must get 𝐸sup0≀𝑑≀𝑇||π‘₯ξ€·π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘¦π‘‘βˆ§πœ‚π‘–βˆ§πœƒπ‘–ξ€Έ||2≀𝐢2(𝑖)β„Ž1/2,(3.47) where 𝐢2(𝑖)=8𝑇(𝑇+4)𝐿𝑖𝐢(1+4𝑑)𝑒8𝑇(𝑇+4)𝐿𝑖.

Lemma 3.5. Under the conditions (H1) and (H3) if πœ€βˆˆ(0,1) and 𝑇>0, then there exists a sufficiently large integer ̂𝑖 (dependent on πœ€ and 𝑇) and sufficiently small ξβ„Ž such that π‘ƒξ‚€πœƒΜ‚π‘–ξ‚ξβ‰€π‘‡β‰€πœ€βˆ€β„Žβ‰€β„Ž.(3.48)

Proof. By ItΓ΄ formula, we have 𝑉𝑑𝑉(𝑦(𝑑))=𝑦[𝑑]1(𝑦(𝑑))𝑓(𝑧(𝑑),𝑧())+2𝑔trace𝑇[𝑑](𝑧(𝑑),𝑧())𝑉𝑦𝑦[𝑑](𝑦(𝑑))𝑔(𝑧(𝑑),𝑧())𝑑𝑑+𝑉𝑦[𝑑]=ξ€·[𝑑](𝑦(𝑑))𝑔(𝑧(𝑑),𝑧())𝑑𝐡(𝑑)𝐿𝑉(𝑦(𝑑),𝑦())+𝑉𝑦[[𝑑][𝑑]]+1(𝑦(𝑑))𝑓(𝑧(𝑑),𝑧())βˆ’π‘“(𝑦(𝑑),𝑦())2𝑔trace𝑇[𝑑](𝑧(𝑑),𝑧())𝑉𝑦𝑦[𝑑](𝑦(𝑑))𝑔(𝑧(𝑑),𝑧())βˆ’π‘”π‘‡[𝑑](𝑦(𝑑),𝑦())𝑉𝑦𝑦[𝑑](𝑦(𝑑))𝑔(𝑦(𝑑),𝑦())𝑑𝑑+𝑉𝑦[𝑑](𝑦(𝑑))𝑔(𝑧(𝑑),𝑧())𝑑𝐡(𝑑).(3.49) By condition (H1), 𝑉𝑦[[𝑑][𝑑]]+1(𝑦(𝑑))𝑓(𝑧(𝑑),𝑧())βˆ’π‘“(𝑦(𝑑),𝑦())2𝑔trace𝑇[𝑑](𝑧(𝑑),𝑧())𝑉𝑦𝑦[𝑑](𝑦(𝑑))𝑔(𝑧(𝑑),𝑧())βˆ’π‘”π‘‡[𝑑](𝑦(𝑑),𝑦())𝑉𝑦𝑦[𝑑]ξ€»=𝑉(𝑦(𝑑))𝑔(𝑦(𝑑),𝑦())𝑦[[𝑠][𝑠]]+1(𝑦(𝑠))𝑓(𝑧(𝑠),𝑧())βˆ’π‘“(𝑦(𝑠),𝑦())2𝑔trace𝑇[𝑠](𝑧(𝑠),𝑧())βˆ’π‘”π‘‡[𝑠]𝑉(𝑦(𝑠),𝑦())𝑦𝑦[𝑠]+1(𝑦(𝑠))𝑔(𝑧(𝑠),𝑧())2𝑔trace𝑇[𝑠](𝑦(𝑠),𝑦())𝑉𝑦𝑦[[𝑠][𝑠]](𝑦(𝑠))𝑔(𝑧(𝑠),𝑧())βˆ’π‘”(𝑦(𝑠),𝑦())≀𝑐𝑖||||+||[𝑑][𝑑])||ξ€Έ,𝑦(𝑑)βˆ’π‘§(𝑑)𝑦()βˆ’π‘§((3.50) where 𝑐𝑖 denotes a positive constant independent of β„Ž. Substituting (3.50) into (3.49), we obtain that, for 0β‰€π‘‘β‰€πœƒπ‘–, ξ€·[𝑑]𝑑𝑉(𝑦(𝑑))≀𝐿𝑉(𝑦(𝑑),𝑦())+𝑐𝑖||𝑦||+||𝑦([𝑑][𝑑])||(𝑑)βˆ’π‘§(𝑑))βˆ’π‘§(𝑑𝑑+𝑉𝑦[𝑑](𝑦(𝑑))𝑔(𝑧(𝑑),𝑧())𝑑𝐡(𝑑).(3.51) Hence, for π‘‘βˆˆ[𝑛,𝑛+1), we can integrate both sides of (3.51) from 𝑛 to π‘‘βˆ§πœƒπ‘– and take the expectations ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–ξ€œξ€Έξ€Έβ‰€πΈπ‘‰(𝑦(𝑛))+πΈπ‘‘βˆ§πœƒπ‘–π‘›[𝑠]ξ€œπΏπ‘‰(𝑦(𝑠),𝑦())𝑑𝑠+πΈπ‘‘βˆ§πœƒπ‘–π‘›π‘π‘–ξ€·||||+||[𝑑][𝑑])||𝑦(𝑑)βˆ’π‘§(𝑑)𝑦()βˆ’π‘§(𝑑𝑠,(3.52) while π‘π‘–πΈξ€œπ‘‘π‘›ξ€·||π‘¦ξ€·π‘ βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘§π‘ βˆ§πœƒπ‘–ξ€Έ||+||π‘¦ξ€·ξ€Ίπ‘ βˆ§πœƒπ‘–ξ€»ξ€Έβˆ’π‘§ξ€·ξ€Ίπ‘ βˆ§πœƒπ‘–||𝑑𝑠=π‘π‘–ξ€œπ‘‘π‘›πΈ||π‘¦ξ€·π‘ βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘§π‘ βˆ§πœƒπ‘–ξ€Έ||𝑑𝑠+π‘π‘–ξ€œπ‘‘π‘›πΈ||π‘¦ξ€·ξ€Ίπ‘ βˆ§πœƒπ‘–ξ€»ξ€Έβˆ’π‘§ξ€·ξ€Ίπ‘ βˆ§πœƒπ‘–||ξ€»ξ€Έπ‘‘π‘ β‰€π‘π‘–ξ€œπ‘‘π‘›ξ‚€πΈ||π‘¦ξ€·π‘ βˆ§πœƒπ‘–ξ€Έξ€·βˆ’π‘§π‘ βˆ§πœƒπ‘–ξ€Έ||21/2𝑑𝑠+π‘π‘–ξ€œπ‘‘π‘›ξ‚€πΈ||π‘¦ξ€·ξ€Ίπ‘ βˆ§πœƒπ‘–ξ€»ξ€Έβˆ’π‘§ξ€·ξ€Ίπ‘ βˆ§πœƒπ‘–||ξ€»ξ€Έ21/2𝑑𝑠≀2π‘π‘–ξ€œπ‘‘π‘›ξƒ©πΈsup0β‰€π‘’β‰€π‘ βˆ§πœƒπ‘–||𝑦||(𝑒)βˆ’π‘§(𝑒)2ξƒͺ1/2𝑑𝑠≀2π‘π‘–ξ€œπ‘‘π‘›ξ€ΊπΆ1(𝑖)β„Ž1/2ξ€»1/2𝑑𝑠≀2𝑐𝑖𝑇𝐢1(𝑖)β„Ž1/2ξ€»1/2≀𝐢3(𝑖)β„Ž1/4,(3.53) where 𝐢3(𝑖)=2𝑐𝑖𝑇(𝐢1(𝑖))1/2. Substituting this into (3.52) yields that ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–Μƒξ€œξ€Έξ€Έβ‰€πΈπ‘‰(𝑦(𝑛))+𝛽+πΈπ‘‘βˆ§πœƒπ‘–π‘›[𝑠](𝐿𝑉(𝑦(𝑠),𝑦()))𝑑𝑠,(3.54) where ̃𝛽=𝐢3(𝑖)β„Ž1/4. For π‘‘βˆˆ[0,1), by condition (H3), we obtain that ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–ξ€œξ€Έξ€Έβ‰€π‘‰(𝑦(0))+π›ΌπΈπ‘‘βˆ§πœƒπ‘–0[[𝑠]]̃𝛽[]+Μƒξ€œ1+𝑉(𝑦(𝑠))+𝑉(𝑦())𝑑𝑠+≀𝑉(𝑦(0))+𝛼1+𝑉(𝑦(0))𝛽+π›ΌπΈπ‘‘βˆ§πœƒπ‘–0𝑉≀̃̂𝛽(𝑦(𝑠))𝑑𝑠𝛽+1ξ€œ+𝛼𝑑0ξ€·π‘¦ξ€·πΈπ‘‰π‘ βˆ§πœƒπ‘–ξ€Έξ€Έπ‘‘π‘ ,(3.55) where ̂𝛽1[]𝑐=𝑉(𝑦(0))+𝛼1+𝑉(𝑦(0))=(1+𝛼)𝑉0ξ€Έ+𝛼<∞.(3.56) Hence, by the Gronwall inequality, ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–β‰€ΜƒΜ‚π›½ξ€Έξ€Έπ›½+1ξ€œ+𝛼𝑑0ξ€·π‘¦ξ€·πΈπ‘‰π‘ βˆ§πœƒπ‘–β‰€ξ€·ΜƒΜ‚π›½ξ€Έξ€Έπ‘‘π‘ π›½+1𝑒𝛼𝑑≀̃̂𝛽𝛽+1𝑒𝛼<∞,(3.57) for 0≀𝑑<1. Consequently, 𝑦𝐸𝑉1βˆ§πœƒπ‘–ξ€Έξ€Έ=lim𝑑→1ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–β‰€ξ€·ΜƒΜ‚π›½ξ€Έξ€Έπ›½+1𝑒𝛼<∞.(3.58) Define 𝛾𝑖=inf||𝑦||β‰₯𝑖||𝑐𝑉(𝑦),βˆ€π‘–β‰₯0||,(3.59) and denote 𝐼𝐴 as the indicator function of a set 𝐴, then we have ̃̂𝛽𝛽+1ξ€Έπ‘’π›Όξ€·π‘¦ξ€·πœƒβ‰₯πΈπ‘‰π‘–ξ€·π‘‰ξ€·π‘¦ξ€·πœƒβˆ§1ξ€Έξ€Έβ‰₯𝐸𝑖𝐼{πœƒπ‘–β‰€1}ξ€Έβ‰₯π›Ύπ‘–π‘ƒξ€·πœƒπ‘–ξ€Έ.≀1(3.60) Letting π‘–β†’βˆž, we have that 𝑃(πœƒβˆžβ‰€1)=0, namely, π‘ƒξ€·πœƒβˆžξ€Έ>1=1.(3.61) By (3.57) and (3.61), ̃̂𝛽𝐸𝑉(𝑦(𝑑))≀𝛽+1𝑒𝛼<∞,0≀𝑑≀1.(3.62) For π‘‘βˆˆ[1,2), by (3.54), we have ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–[]+Μƒξ€œξ€Έξ€Έβ‰€πΈπ‘‰(𝑦(1))+𝛼1+𝐸𝑉(𝑦(1))𝛽+𝛼𝑑1ξ€·π‘¦ξ€·πΈπ‘‰π‘ βˆ§πœƒπ‘–β‰€ΜƒΜ‚π›½ξ€Έξ€Έπ‘‘π‘ π›½+2ξ€œ+𝛼𝑑1ξ€·π‘¦ξ€·πΈπ‘‰π‘ βˆ§πœƒπ‘–ξ€Έξ€Έπ‘‘π‘ ,(3.63) where ̂𝛽2̃̂𝛽≀(1+𝛼)𝛽+1𝑒𝛼+𝛼<∞.(3.64) Hence, by the Gronwall inequality, ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–β‰€ΜƒΜ‚π›½ξ€Έξ€Έπ›½+2ξ€œ+𝛼𝑑1ξ€·π‘¦ξ€·πΈπ‘‰π‘ βˆ§πœƒπ‘–β‰€ξ€·ΜƒΜ‚π›½ξ€Έξ€Έπ‘‘π‘ π›½+2𝑒𝛼(π‘‘βˆ’1)≀̃̂𝛽𝛽+2𝑒𝛼<∞,(3.65) for 1≀𝑑<2. Consequently, we can obtain that 𝑦𝐸𝑉2βˆ§πœƒπ‘–ξ€Έξ€Έ=lim𝑑→2ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–β‰€ξ€·ΜƒΜ‚π›½ξ€Έξ€Έπ›½+2𝑒𝛼<∞.(3.66) In the same way, we have ̃̂𝛽𝐸𝑉(𝑦(𝑑))≀𝛽+2𝑒𝛼<∞,1≀𝑑≀2.(3.67) Repeating this procedure, for π‘‘βˆˆ[π‘βˆ’1,𝑇), we can show that ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–β‰€ξ€·ΜƒΜ‚π›½ξ€Έξ€Έπ›½+𝑇𝑒𝛼<∞,(3.68) where ̂𝛽𝑇̃̂𝛽≀(1+𝛼)𝛽+π‘βˆ’1𝑒𝛼+𝛼<∞.(3.69) Consequently, we can obtain that ξ€·π‘¦ξ€·πΈπ‘‰π‘‡βˆ§πœƒπ‘–ξ€Έξ€Έ=limπ‘‘β†’π‘‡ξ€·π‘¦ξ€·πΈπ‘‰π‘‘βˆ§πœƒπ‘–β‰€ξ€·ΜƒΜ‚π›½ξ€Έξ€Έπ›½+𝑇𝑒𝛼.(3.70) We compute ̃̂𝛽𝛽+𝑇𝑒𝛼𝑦β‰₯πΈπ‘‰π‘‡βˆ§πœƒπ‘–ξ€·π‘‰ξ€·π‘¦ξ€·πœƒξ€Έξ€Έβ‰₯𝐸𝑖𝐼{πœƒπ‘–β‰€π‘‡}ξ€Έβ‰₯π›Ύπ‘–π‘ƒξ€·πœƒπ‘–ξ€Έ.≀𝑇(3.71) Then we have π‘ƒξ€·πœƒπ‘–ξ€Έβ‰€ξ€·ΜƒΜ‚π›½β‰€π‘‡π›½+𝑇𝑒𝛼𝛾𝑖=𝐢3(𝑖)β„Ž1/4+̂𝛽𝑇𝑒𝛼𝛾𝑖.(3.72) Now, for any πœ€βˆˆ(0,1), choose ̂𝑖𝑖= sufficiently large for Μ‚π›½π‘‡π‘’π›Όπ›ΎΜ‚π‘–β‰€πœ€2,(3.73) and then choose ξβ„Ž sufficiently small for 𝐢3ξ€·Μ‚π‘–ξ€Έξβ„Ž1/4π‘’π›Όπ›ΎΜ‚π‘–β‰€πœ€2.(3.74) Hence, π‘ƒξ‚€πœƒΜ‚π‘–ξ‚ξβ‰€π‘‡β‰€πœ€βˆ€β„Žβ‰€β„Ž.(3.75)

The following theorems describe the convergence in probability of the EM method to (2.3) under the local Lipschitz condition (H1) and some additional conditions (H3).

Theorem 3.6. Under the conditions (H1) and (H3), for arbitrarily small 𝜎∈(0,1), limβ„Žβ†’0π‘ƒξ‚΅πœ”βˆΆsup0≀𝑑≀𝑇||||ξ‚Άπ‘₯(𝑑)βˆ’π‘¦(𝑑)>𝜎=0,(3.76) for any 𝑇>0.

Proof. For arbitrarily small 𝜎,πœ€βˆˆ(0,1). We set βˆ’ξ‚»Ξ©=πœ”βˆΆsup0≀𝑑≀𝑇||||ξ‚Ό.π‘₯(𝑑)βˆ’π‘¦(𝑑)>𝜎(3.77) By Theorem 3.2 and Lemma 3.5, there exists a pair of ̂𝑖 and ξβ„Ž such that π‘ƒξ‚€πœ‚Μ‚π‘–ξ‚β‰€πœ€β‰€π‘‡3,π‘ƒξ‚€πœƒΜ‚π‘–ξ‚β‰€πœ€β‰€π‘‡3,βˆ€β„Žβ‰€β„Ž.(3.78) For ξβ„Žβ„Žβ‰€, π‘ƒξ‚΅βˆ’Ξ©ξ‚Άξ‚΅β‰€π‘ƒβˆ’ξ‚†πœ‚Μ‚π‘–Μ‚π‘–ξ‚‡ξ‚Άξ‚€πœ‚Μ‚π‘–Μ‚π‘–ξ‚ξ‚΅Ξ©βˆ©βˆ§πœƒ>𝑇+π‘ƒβˆ§πœƒβ‰€π‘‡β‰€π‘ƒβˆ’ξ‚†πœ‚Μ‚π‘–Μ‚π‘–ξ‚‡ξ‚Άξ‚€πœ‚Μ‚π‘–ξ‚ξ‚€πœƒΜ‚π‘–ξ‚ξ‚΅Ξ©βˆ©βˆ§πœƒ>𝑇+𝑃≀𝑇+π‘ƒβ‰€π‘‡β‰€π‘ƒβˆ’ξ‚†πœ‚Μ‚π‘–Μ‚π‘–ξ‚‡ξ‚Ά+Ξ©βˆ©βˆ§πœƒ>𝑇2πœ€3.(3.79) By Lemma 3.4, we get 𝜎2π‘ƒξ‚΅βˆ’ξ‚†πœ‚Μ‚π‘–Μ‚π‘–ξ‚‡ξ‚Άξ‚ΈΞ©βˆ©βˆ§πœƒ>𝑇≀𝐸sup0≀𝑑≀𝑇|||π‘₯̂𝑖̂𝑖̂𝑖̂𝑖|||π‘‘βˆ§πœ‚βˆ§πœƒβˆ’π‘¦π‘‘βˆ§πœ‚βˆ§πœƒ2𝐼{πœ‚Μ‚π‘–βˆ§πœƒΜ‚π‘–>𝑇}≀𝐸sup0≀𝑑≀𝑇|||π‘₯̂𝑖̂𝑖̂𝑖̂𝑖|||π‘‘βˆ§πœ‚βˆ§πœƒβˆ’π‘¦π‘‘βˆ§πœ‚βˆ§πœƒ2≀𝐢2ξ€·Μ‚π‘–ξ€Έβ„Ž1/2.(3.80) Hence, π‘ƒξ‚΅βˆ’ξ‚†πœ‚Μ‚π‘–Μ‚π‘–ξ‚‡ξ‚Άβ‰€πΆΞ©βˆ©βˆ§πœƒ>𝑇2ξ€·Μ‚π‘–ξ€Έβ„Ž1/2𝜎2.(3.81) For all sufficiently small β„Ž, we obtain π‘ƒξ‚΅βˆ’ξ‚†πœ‚Μ‚π‘–Μ‚π‘–ξ‚‡ξ‚Άβ‰€πœ€Ξ©βˆ©βˆ§πœƒ>𝑇3.(3.82) From (3.79) and (3.82), we see that for all sufficiently small β„Ž, π‘ƒξ‚΅βˆ’Ξ©ξ‚Άβ‰€πœ€,(3.83) which proves the theorem.

Of course, 𝑧(𝑑) is computable but 𝑦(𝑑) is not, so the following theorem is much more useful in practice.

Theorem 3.7. Under the conditions (H1) and (H3), for arbitrarily small 𝜎∈(0,1), limβ„Žβ†’0π‘ƒξ‚΅πœ”βˆΆsup0≀𝑑≀𝑇||||ξ‚Άπ‘₯(𝑑)βˆ’π‘§(𝑑)>𝜎=0,(3.84) for any 𝑇>0.

Proof. For arbitrarily small 𝜎,πœ€βˆˆ(0,1). We denote Ω=πœ”βˆΆsup0≀𝑑≀𝑇||||ξ‚Ό.π‘₯(𝑑)βˆ’π‘§(𝑑)>𝜎(3.85) In the same way as Theorem 3.6, we can see that π‘ƒξ‚€ξΞ©ξ‚ξ‚€ξξ‚†πœ‚Μ‚π‘–Μ‚π‘–+β‰€π‘ƒΞ©βˆ©βˆ§πœƒ>𝑇2πœ€3.(3.86) But by Lemma 3.3, we get 𝜎2π‘ƒξ‚€ξξ‚†πœ‚Μ‚π‘–Μ‚π‘–ξ‚ΈΞ©βˆ©βˆ§πœƒ>𝑇≀𝐸sup0≀𝑑≀𝑇|||π‘₯̂𝑖̂𝑖̂𝑖̂𝑖|||π‘‘βˆ§πœ‚βˆ§πœƒβˆ’π‘§π‘‘βˆ§πœ‚βˆ§πœƒ2𝐼{πœ‚Μ‚π‘–βˆ§πœƒΜ‚π‘–>𝑇}≀𝐸sup0≀𝑑≀𝑇|||π‘₯̂𝑖̂𝑖̂𝑖̂𝑖|||π‘‘βˆ§πœ‚βˆ§πœƒβˆ’π‘§π‘‘βˆ§πœ‚βˆ§πœƒ2≀2𝐸sup0≀𝑑≀𝑇|||π‘₯̂𝑖̂𝑖̂𝑖̂𝑖|||π‘‘βˆ§πœ‚βˆ§πœƒβˆ’π‘¦π‘‘βˆ§πœ‚βˆ§πœƒ2+2𝐸sup0≀𝑑≀𝑇|||𝑦̂𝑖̂𝑖̂𝑖̂𝑖|||π‘‘βˆ§πœ‚βˆ§πœƒβˆ’π‘§π‘‘βˆ§πœ‚βˆ§πœƒ2≀2𝐸sup0≀𝑑≀𝑇|||π‘₯̂𝑖̂𝑖̂𝑖̂𝑖|||π‘‘βˆ§πœ‚βˆ§πœƒβˆ’π‘¦π‘‘βˆ§πœ‚βˆ§πœƒ2+2𝐸sup0≀𝑑≀𝑇|||𝑦̂𝑖̂𝑖|||π‘‘βˆ§πœƒβˆ’π‘§π‘‘βˆ§πœƒ2𝐢≀22̂𝑖+𝐢1ξ€·Μ‚π‘–β„Žξ€Έξ€Έ1/2.(3.87) therefore, π‘ƒξ‚€ξξ‚†πœ‚Μ‚π‘–Μ‚π‘–β‰€2ξ€·πΆΞ©βˆ©βˆ§πœƒ>𝑇2̂𝑖+𝐢1ξ€·Μ‚π‘–β„Žξ€Έξ€Έ1/2𝜎2.(3.88) For all sufficiently small β„Ž, we obtain π‘ƒξ‚€ξξ‚†πœ‚Μ‚π‘–Μ‚π‘–β‰€πœ€Ξ©βˆ©βˆ§πœƒ>𝑇3.(3.89) From (3.86) and (3.89), we see that for all sufficiently small β„Ž, π‘ƒξ‚€ξΞ©ξ‚β‰€πœ€,(3.90) which proves the assertion (3.84).

4. Numerical Example

Let us now discuss a numerical example to demonstrate the results which we obtain.

Example 4.1. Let us consider the stochastic differential equations with piecewise continuous arguments 𝑑π‘₯(𝑑)=βˆ’π‘₯3[𝑑])ξ€»ξ€Ί(𝑑)+π‘₯(𝑑𝑑+sinπ‘₯2[𝑑])ξ€»(𝑑)+π‘₯(𝑑𝐡(𝑑)βˆ€π‘‘β‰₯0.(4.1) Defining 𝑉(π‘₯)=π‘₯2, we have 𝐿𝑉(π‘₯,𝑦)=2π‘₯βˆ’π‘₯3ξ€Έ+ξ€·+𝑦sinπ‘₯2ξ€Έ+𝑦2β‰€βˆ’2π‘₯4ξ€·+2π‘₯𝑦+2sinπ‘₯2ξ€Έ2+2𝑦2≀31+π‘₯2+𝑦2ξ€Έ,(4.2) where 𝛼=3. In other words, the equation satisfies condition (H3). By Theorem 3.1, we can conclude that the SEPCA (4.1) has a unique global solution π‘₯(𝑑) on π‘‘βˆˆ[0,∞). Moreover, the EM method can be applied to approximate the solution of the SEPCA (4.1). Given the stepsize β„Ž=1/π‘š, by (2.10), (2.11), and (2.12), the Euler method to (4.1) leads to a numerical process of the following type: π‘¦π‘˜π‘š+𝑙+1=π‘¦π‘˜π‘š+𝑙+ξ€·βˆ’π‘¦3π‘˜π‘š+𝑙+π‘¦π‘˜π‘šξ€Έξ€·β„Ž+sin𝑦2π‘˜π‘š+𝑙+π‘¦π‘˜π‘šξ€ΈΞ”π΅π‘˜π‘š+𝑙.(4.3) The continuous Euler-Maruyama approximate solution is defined by ξ€œπ‘¦(𝑑)=𝑦(0)+𝑑0ξ€·βˆ’π‘§3([𝑠])ξ€Έξ€œπ‘ )+𝑧(𝑑𝑠+𝑑0ξ€·sin𝑧2([𝑠])𝑠)+𝑧(𝑑𝐡(𝑠),(4.4) where 𝑧(𝑑)=π‘¦π‘˜π‘š+𝑙 and 𝑧([𝑑])=π‘¦π‘˜π‘š for π‘‘βˆˆ[π‘‘π‘˜π‘š+𝑙,π‘‘π‘˜π‘š+𝑙+1). By Theorems 3.6 and 3.7, we also have the convergence in probability of the EM method to (4.1) under the local Lipschitz condition (H1) and some additional conditions (H3).

Acknowledgment

The financial support from the National Natural Science Foundation of China (no. 11071050) is gratefully acknowledged.