Research Article
Composite Differential Search Algorithm
Procedure 1
Algorithm description of Differential search algorithm.
| (1) begin | | (2) Set the generation counter ; and randomly initialize a population of | | NP * individuals . Initialize the parameter , | | (3) Evaluate the fitness for each individual in . | | (4) while stopping criteria is not satisfied do | | (5) scale = randg(2 * rand) * (rand-rand) | | (6) for to NP do | | (7) select randomly | | (8) | | (9) end | | (10) = rand (NP, ); | | (11) If rand < rand then | | (12) If rand < then | | (13) for = 1 to NP do | | (14) (,:) = (,:) < rand | | (15) end | | (16) else | | (17) for = 1 to NP do | | (18) (, randi()) = 0 | | (19) end | | (20) end | | (21) else | | (22) for = 1 to NP do | | (23) = randi(, 1, ) | | (24) for = 1 to size (, 2) do | | (25) (, ()) = 0 | | (26) end | | (27) end | | (28) end | | (29) ; | | (30) ; | | (31) for to NP do | | (32) Evaluate the offspring | | (33) If is better than then | | (34) | | (35) end if | | (36) end for | | (37) Memorize the best solution achieved so far | | (38) end while | | (39) end |
|