Research Article

Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction

Table 1

ARIMA (1, 0, 0) estimation output with CLOSE of Dell index.

Dependent variable: CLOSE
Method: least squares
Date: 03/21/11 Time: 15:54
Sample (adjusted): 8/18/1988–2/25/2011
Included observations: 5679 after adjustments
Convergence achieved after 4 iterations

VariableCoefficientStandard error -statisticProb.

C34.114846.0282385.6591730.0000
AR (1)0.9948020.001346739.14560.0000

-squared0.989716Mean dependent variable33.91262
Adjusted -squared0.989714S.D. dependent variable23.28046
S.E. of regression2.361101Akaike info criterion4.556485
Sum squared residual31648.13Schwarz criterion4.558825
Log likelihood−12936.14 -statistic546336.2
Durbin-Watson static2.015870Prob. ( -statistic)0.000000

Inverted AR roots 0.99