Research Article

Hierarchical Bayesian Spatio-Temporal Modeling for PM10 Prediction

Table 3

Posterior estimates and 95% credible interval for the parameters of the AR, GP, and GPP models fitted for PM10 concentration levels. SD stands for standard deviation.

ModelsParametersMeanMedianSD95% credible interval

AR1.35211.35190.0206(1.3115, 1.3934)
Temp0.00010.00010.0004(-0.0007, 0.0009)
RH0.00000.00000.0002(-0.0004, 0.0003)
0.01600.01450.0267(-0.0328, 0.0734)
0.02090.02080.0007(0.0199, 0.0226)
0.01240.01230.0009(0.0107, 0.0144)
0.01680.01680.0000(0.0168, 0.0168)

GP12.130312.43781.1060(9.7744, 13.5797)
Temp-0.0173-0.02670.0334(-0.0590, 0.0538)
RH-0.0153-0.01630.0041(-0.0209, -0.0062)
0.00520.00520.0001(0.0050, 0.0054)
15.226212.83937.9727(6.6616, 35.1414)
0.00320.00270.0018(0.0011, 0.0069)

GPP0.47920.47840.0692(0.3425, 0.6131)
Temp-0.0028-0.00280.0013(-0.0053, -0.0003)
RH-0.0013-0.00130.0003(-0.0018, -0.0007)
0.97040.97040.0025(0.9654, 0.9754)
0.00520.00520.0001(0.0050, 0.0054)
1.74501.74530.0256(1.6955, 1.7954)
0.00100.00100.0000(0.0010, 0.0010)