Journal of Applied Mathematics / 2021 / Article / Tab 3 / Research Article
Hierarchical Bayesian Spatio-Temporal Modeling for PM10 Prediction Table 3 Posterior estimates and 95% credible interval for the parameters of the AR, GP, and GPP models fitted for PM10 concentration levels. SD stands for standard deviation.
Models Parameters Mean Median SD 95% credible interval AR 1.3521 1.3519 0.0206 (1.3115, 1.3934) Temp 0.0001 0.0001 0.0004 (-0.0007, 0.0009) RH 0.0000 0.0000 0.0002 (-0.0004, 0.0003) 0.0160 0.0145 0.0267 (-0.0328, 0.0734) 0.0209 0.0208 0.0007 (0.0199, 0.0226) 0.0124 0.0123 0.0009 (0.0107, 0.0144) 0.0168 0.0168 0.0000 (0.0168, 0.0168) GP 12.1303 12.4378 1.1060 (9.7744, 13.5797) Temp -0.0173 -0.0267 0.0334 (-0.0590, 0.0538) RH -0.0153 -0.0163 0.0041 (-0.0209, -0.0062) 0.0052 0.0052 0.0001 (0.0050, 0.0054) 15.2262 12.8393 7.9727 (6.6616, 35.1414) 0.0032 0.0027 0.0018 (0.0011, 0.0069) GPP 0.4792 0.4784 0.0692 (0.3425, 0.6131) Temp -0.0028 -0.0028 0.0013 (-0.0053, -0.0003) RH -0.0013 -0.0013 0.0003 (-0.0018, -0.0007) 0.9704 0.9704 0.0025 (0.9654, 0.9754) 0.0052 0.0052 0.0001 (0.0050, 0.0054) 1.7450 1.7453 0.0256 (1.6955, 1.7954) 0.0010 0.0010 0.0000 (0.0010, 0.0010)