Research Article

Volatility Analysis of Exchange Rate with Correlated Errors: A Sliding Data Matrix Approach

Pseudocode 1

R codes for simulated data.
R Codes
RW <- function(N, x0, mu, variance) {
   z<-cumsum(rnorm(n=N, mean=0,
sd=sqrt(variance)))
   t<-1:N
   x<-x0+tmu+z
   return(x)
  }
P<-RW(4801,2,0,0.004)
  Q<-c(rep(NA,4800))
  for (i in 1:4800){
   Q[i]<- P[i+1]-P[i]
  }
 M<-matrix(c(rep(NA,4800)), nrow =240, ncol =20)
 for (i in 1:240) {
   A<-1+(20(i-1))
   B<-20i
   M[i,]<- Q[A:B]
 }
##### For sliding data matrix ####
 D<-c(rep(NA,227))
 W<-c(rep(NA,227))
 for (i in 1:227) {
   ma<-M[(i):(12+i),]
   as.matrix(ma)
   cc<-matrix(c(rep(NA,400)),nrow =20, ncol =20)
   cc<-cov(ma)
   D[i]<-sqrt(sum(diag(cc)))
   vvvvvW[i]<-sqrt(20)sd(ma[12+i,])
 }
 t.test(D,W,paired=TRUE,conf.level=0.95)
##### For cumulative data matrix, ma becomes #####
ma<-M[(1):(12+i),]