Research Article

An Analysis of Habitual Mode Use in the Years of Rising Oil Prices

Table 7

Probit results of public transit users.

Random effects probitDynamic random effects probit
VariablesCoef.S.E.t-valuep-valueCoef.S.E.t-valuep-value

Ltransit2.0520.05934.5900.0001.4090.11212.6100.000

Female0.1950.0543.6500.0000.2950.0684.3700.000

Age 20s-0.0130.103-0.1300.8970.1180.1220.9700.330

Age 30s-0.1440.101-1.4300.152-0.2520.119-2.1200.034

Age 40s-0.1380.101-1.3700.171-0.2930.122-2.4000.016

Age 50s-0.0040.104-0.0400.969-0.1300.124-1.0500.294

Seoul_m0.3020.0545.5400.0000.4660.0766.1700.000

Time0.0090.00111.3300.0000.0120.00110.8200.000

Vehicles-0.2200.044-4.9800.000-0.2810.054-5.2400.000

Self_emp-0.1620.081-2.0100.044-0.3050.099-3.0800.002

Hchg-0.0570.103-0.5500.579-0.0490.111-0.4500.656

Jchg0.0350.0880.4000.6900.0200.0950.2100.836

Mid income0.0560.0730.7600.4460.0610.0860.7200.474

High income0.0630.0790.7900.4280.0490.0920.5300.599

Oil dummy0.4170.0547.7600.0000.4430.0577.7300.000

Const-1.6270.119-13.6700.000-1.5750.140-11.2700.000

Rho0.2480.0663.7300.000

Theta4.7381.5083.1400.002

Obs39323932

Log likelihood (0)-2501.62-2819.68

Log likelihood (c)-1418.79-2374.45

Chi-sq(df=15)2165.65890.46

Note: reference variable is age 60. reference variable is low income.