Research Article

Dynamic Origin-Destination Matrix Estimation Based on Urban Rail Transit AFC Data: Deep Optimization Framework with Forward Passing and Backpropagation Techniques

Table 3

RMSE and RMSN of the estimation results.

Station indexOrigin station (%)

1Andelibeijie0.6692.71
2Andingmen1.8902.01
3Beihaibei0.5412.57
4Beijingzhan2.3472.61
5Beixinqiao0.8713.07
6Caishikou0.8312.78
7Changchunjie5.6022.52
8Chaoyangmen2.0023.24
9Chegongzhuang1.5322.47
10Chegongzhuangxi1.0762.36
11Chongwenmen3.4752.14
12Ciqikou0.7473.92
13Dengshikou0.8053.42
14Dongdan0.8643.05
15Dongdaqiao1.0572.83
16Dongsi0.8493.13
17Dongsishitiao1.6442.91
18Dongwuyuan0.7082.81
19Dongzhimen3.9882.70
20Fuchengmen2.2002.73
21Fuxingmen1.3233.00
22Guloudajie1.7381.94
23Hepinglibeijie1.3372.19
24Hepingmen1.7071.92
25Jianguomen1.6272.98
26Jishuitan4.9132.17
27Lingjinghutong0.6923.00
28Nanlishilu1.1112.46
29Nanluoguxiang0.6242.66
30Pinganli0.9052.36
31Qianmen2.7162.62
32Shishahai0.4313.23
33Tiananmendong0.6343.65
34Tiananmenxi0.4823.94
35Wangfujing0.7713.82
36Xidan0.8272.81
37Xinjiekou1.0002.84
38Xisi0.6013.11
39Xizhimen3.6872.77
40Xuanwumen2.0762.03
41Yonganli1.2293.16
42Yonghegong1.5712.39
43Zhangzizhonglu0.7192.77

Avg.1.5452.79
Max.5.6023.94
Min.0.4311.92