Research Article
A New Video-Based Crash Detection Method: Balancing Speed and Accuracy Using a Feature Fusion Deep Learning Framework
Table 2
Crash detection models’ performances on testing set.
| No. | Model | True positive (TP) | False negative (FN) | False positive (FP) | True negative (TN) | Accuracy (%) | FPS |
| 1 | Faster R-CNN + SORT + rules [24] | 58 | 32 | 18 | 72 | 72.22 | 0.73 | 2 | ResNet-50 + CBAM + rules | 69 | 21 | 12 | 78 | 81.67 | 50 | 3 | ResNet-50 + CBAM + LSTM | 70 | 20 | 12 | 78 | 82.22 | 27 | 4 | ResNet-50 + SE + Conv-LSTM | 74 | 16 | 12 | 78 | 84.44 | 35 | 5 | ResNet-50 + CBAM + Conv-LSTM | 78 | 12 | 11 | 79 | 87.22 | 33 | 6 | ResNet-50 + CBAM + Bi-Conv-LSTM | 79 | 11 | 11 | 79 | 87.78 | 30 |
|
|