Research Article
Generative Adversarial Network-based Missing Data Handling and Remaining Useful Life Estimation for Smart Train Control and Monitoring Systems
Table 5
General learning algorithm of GAN.
| Input/parameters | (i) Training data: X (ii) Learning epoch: k1/· Training epoch: k2 (iii) Step length: (iv) Mini-batch size: m |
| Output | (v) Optimal parameters for G: (vi) Optimal parameters for D: |
| Learning algorithm | for 1:k1 Initialize , for 1:k2 mini-batch partitioning from X, calculate gradient for D and update Generate random vector, Calculate gradient for G and update end end |
|
|