Research Article

Generative Adversarial Network-based Missing Data Handling and Remaining Useful Life Estimation for Smart Train Control and Monitoring Systems

Table 8

Detailed architecture and relevant parameters of the GAN-based RUL estimation (case for fault code ID 31).

ClassificationDetailed architectures

General learning parameters(i) Learning epoch: 1000
(ii) Learning rate:

Discriminator (i) Number of Layers:10
(ii) Number of nodes in each layer
=(1, 50, 100, 200, 500, 1500, 2500, 3000, 3500, 2653)
(iii) Used activation functions
=(leaky RU for final layer, Sigmoid for layers 1−9)

Generator (i) Number of layers: 7
(ii) Number of nodes in each layer
=(2653, 2700, 2800, 3000, 3200, 3500, 2653)
(iii) Used activation functions: Sigmoid function for each layer