Research Article
MDGCN: Multiple Graph Convolutional Network Based on the Differential Calculation for Passenger Flow Forecasting in Urban Rail Transit
Table 3
The performance in different baselines.
| Model | SH | RMSE | MAE | 10 min | 15 min | 30 min | 10 min | 15 min | 30 min |
| HA | 69.812 | 89.210 | 95.574 | 35.954 | 49.034 | 54.601 | ARIMA | 51.044 | 81.012 | 156.256 | 29.057 | 44.257 | 82.964 | SVR | 30.454 | 36.214 | 39.754 | 17.207 | 19.903 | 21.169 | GBDT | 29.935 | 39.364 | 32.542 | 16.561 | 20.001 | 17.342 | LSTM | 28.059 | 26.541 | 29.354 | 15.705 | 14.672 | 15.584 | Conv-GCN | 22.154 | 21.097 | 25.645 | 11.254 | 14.360 | 14.391 | ResLSTM | 26.387 | 29.548 | 29.642 | 14.087 | 15.265 | 16.005 | GCN + LSTM | 20.165 | 21.364 | 24.608 | 13.904 | 14.367 | 13.927 | MDGCN | 17.041 | 20.962 | 22.354 | 10.552 | 12.786 | 13.452 |
| Model | XM | RMSE | MAE | 10 min | 15 min | 30 min | 10 min | 15 min | 30 min |
| HA | 67.241 | 85.455 | 95.147 | 35.264 | 47.751 | 53.813 | ARIMA | 50.695 | 79.568 | 175.265 | 28.564 | 43.561 | 95.556 | SVR | 29.365 | 35.524 | 36.524 | 16.454 | 18.428 | 19.658 | GBDT | 33.635 | 37.652 | 50.562 | 17.058 | 19.952 | 26.895 | LSTM | 28.545 | 26.421 | 30.241 | 14.214 | 16.754 | 19.241 | Conv-GCN | 19.421 | 20.145 | 24.245 | 12.256 | 13.978 | 15.842 | ResLSTM | 24.007 | 23.557 | 26.352 | 14.545 | 15.812 | 18.731 | GCN + LSTM | 18.954 | 19.145 | 22.296 | 11.925 | 10.770 | 13.754 | MDGCN | 16.713 | 16.927 | 18.560 | 9.924 | 10.247 | 11.155 |
|
|