Research Article

MDGCN: Multiple Graph Convolutional Network Based on the Differential Calculation for Passenger Flow Forecasting in Urban Rail Transit

Table 3

The performance in different baselines.

ModelSH
RMSEMAE
10 min15 min30 min10 min15 min30 min

HA69.81289.21095.57435.95449.03454.601
ARIMA51.04481.012156.25629.05744.25782.964
SVR30.45436.21439.75417.20719.90321.169
GBDT29.93539.36432.54216.56120.00117.342
LSTM28.05926.54129.35415.70514.67215.584
Conv-GCN22.15421.09725.64511.25414.36014.391
ResLSTM26.38729.54829.64214.08715.26516.005
GCN + LSTM20.16521.36424.60813.90414.36713.927
MDGCN17.04120.96222.35410.55212.78613.452

ModelXM
RMSEMAE
10 min15 min30 min10 min15 min30 min

HA67.24185.45595.14735.26447.75153.813
ARIMA50.69579.568175.26528.56443.56195.556
SVR29.36535.52436.52416.45418.42819.658
GBDT33.63537.65250.56217.05819.95226.895
LSTM28.54526.42130.24114.21416.75419.241
Conv-GCN19.42120.14524.24512.25613.97815.842
ResLSTM24.00723.55726.35214.54515.81218.731
GCN + LSTM18.95419.14522.29611.92510.77013.754
MDGCN16.71316.92718.5609.92410.24711.155