Research Article
The Fusion of Multi-Focus Images Based on the Complex Shearlet Features-Motivated Generative Adversarial Network
Table 2
The fusion performance of the seven methods and the proposed method from Figures
9ā
11.
| Method | Flower | Cup | Calendar | SD | QAB/F | En | MI | SD | QAB/F | En | MI | SD | QAB/F | En | MI |
| PCNN | 40.61 | 0.41 | 3.90 | 4.72 | 38.22 | 0.43 | 4.01 | 4.21 | 37.42 | 0.40 | 4.88 | 4.31 | Contourlet | 40.62 | 0.40 | 4.02 | 4.73 | 38.39 | 0.42 | 4.03 | 4.38 | 37.65 | 0.52 | 5.35 | 4.47 | Shearlet | 40.81 | 0.42 | 4.06 | 4.89 | 38.44 | 0.45 | 4.08 | 4.41 | 38.15 | 0.56 | 5.55 | 4.55 | GAN | 40.81 | 0.57 | 4.80 | 4.99 | 39.10 | 0.51 | 4.10 | 4.63 | 38.59 | 0.60 | 5.76 | 4.91 | CSR | 40.89 | 0.59 | 4.65 | 4.77 | 38.55 | 0.54 | 4.10 | 4.60 | 39.03 | 0.66 | 5.90 | 4.89 | SR-SML | 41.19 | 0.57 | 4.66 | 5.12 | 38.71 | 0.55 | 4.14 | 4.72 | 39.11 | 0.67 | 5.93 | 4.91 | DCNN | 40.16 | 0.60 | 4.81 | 5.16 | 40.01 | 0.58 | 4.09 | 4.81 | 39.98 | 0.65 | 5.98 | 5.24 | Proposed | 41.26 | 0.68 | 4.96 | 5.27 | 40.21 | 0.63 | 4.18 | 4.93 | 39.91 | 0.67 | 6.00 | 5.29 |
|
|