Research Article
Analysis of Travel Mode Choice in Seoul Using an Interpretable Machine Learning Approach
Table 3
Comparison of prediction performances of the ML models.
| Travel modes | Specificity | Sensitivity | Balanced accuracy | ANN | RF | XGB | ANN | RF | XGB | ANN | RF | XGB |
| Car | 0.806 | 0.881 | 0.920 | 0.752 | 0.713 | 0.670 | 0.779 | 0.797 | 0.795 | Bike | 0.985 | 0.990 | 0.993 | 0.116 | 0.338 | 0.291 | 0.550 | 0.664 | 0.642 | Transit | 0.879 | 0.887 | 0.883 | 0.515 | 0.639 | 0.744 | 0.697 | 0.763 | 0.813 | Walking | 0.819 | 0.834 | 0.850 | 0.739 | 0.826 | 0.856 | 0.779 | 0.830 | 0.853 | All | 0.882 | 0.909 | 0.923 | 0.647 | 0.727 | 0.768 | 0.764 | 0.818 | 0.845 |
|
|
Note. ANN = artificial neural network; RF = random forest; XGB = extreme gradient boosting.
|