Research Article

Analysis of Travel Mode Choice in Seoul Using an Interpretable Machine Learning Approach

Table 3

Comparison of prediction performances of the ML models.

Travel modesSpecificitySensitivityBalanced accuracy
ANNRFXGBANNRFXGBANNRFXGB

Car0.8060.8810.9200.7520.7130.6700.7790.7970.795
Bike0.9850.9900.9930.1160.3380.2910.5500.6640.642
Transit0.8790.8870.8830.5150.6390.7440.6970.7630.813
Walking0.8190.8340.8500.7390.8260.8560.7790.8300.853
All0.8820.9090.9230.6470.7270.7680.7640.8180.845

Note. ANN = artificial neural network; RF = random forest; XGB = extreme gradient boosting.