Research Article
Dynamic Path Flow Estimation Using Automatic Vehicle Identification and Probe Vehicle Trajectory Data: A 3D Convolutional Neural Network Model
Table 1
Performance of Model-A2 trained by samples with noisy labels.
| | 0 | 0.2 | 0.4 | | 0.2 | 0.4 | 0.6 | 0.2 | 0.4 | 0.6 | 0.2 | 0.4 | 0.6 |
| RMSE veh/10 min | 3.58 | 3.56 | 3.62 | 5.49 | 5.45 | 5.26 | 8.87 | 8.81 | 8.72 | RMSE % | 44.90 | 44.62 | 45.39 | 68.84 | 68.36 | 65.93 | 111.28 | 110.58 | 109.33 | MAE veh/10 min | 1.88 | 1.87 | 1.89 | 2.39 | 2.37 | 2.32 | 3.56 | 3.56 | 3.52 | MAE % | 23.54 | 23.48 | 23.76 | 29.95 | 29.73 | 29 | 44.69 | 44.6 | 44.12 |
|
|