Research Article

Vehicle Routing Problem with Transshipment: Mathematical Model and Algorithm

Table 5

Comparison between the best-found solutions from TA-NS and the lower bound (optimal solution of VRP) of set A.

Problem instanceLower bound (optimal CVRP)No. of TDUpper bound CVRPTBest Sol. CVRPT%Diff from lower bound (%)Best sol. CVRPOT# of TD satisfied%Diff from lower bound (%)

A n32 k57846106593419.1386239.95
A n33 k5661680777517.25762515.28
A n33 k6742686284714.1580959.03
A n34 k57787101588814.14888714.14
A n36 k579971138101927.53928616.15
A n37 k5669783925.41743411.06
A n37 k694971395114120.2398944.21
A n38 k5730894829.86847716.03
A n39 k5822893513.75909710.58
A n39 k683181117105526.96978717.69
A n44 k69379117525.401104717.82
A n45 k69449124331.671073513.67
A n45 k711469135418.151331716.14
A n46 k79149113924.621013610.83
A n48 k7107310149038.861216613.33
A n53 k7101011140238.811188617.62
A n54 k7116711144623.911336714.48
A n55 k9107311135025.821203712.12
A n60 k9135412179032.201495510.41
A n61 k9103512129725.311194815.36
A n62 k8128812174435.401484715.22
A n63 k9163413198321.361851713.28
A n63 k10131513174933.001518615.44
A n64 k9140213180228.531558711.13
A n65 k9117713164739.931378917.08
A n69 k9115914158837.011357917.08
A n80 k10176416221425.5120471016.04