Research Article
Highway Travel Time Prediction of Segments Based on ANPR Data considering Traffic Diversion
Table 7
Error results of different methods.
| Methods | Error | Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 |
| CNNs | RMSE | 2.8242 | 0.3846 | 0.8826 | 17.3829 | 0.2771 | 0.6939 | MAE | 0.8733 | 0.2945 | 0.6959 | 5.9437 | 0.2194 | 0.526 | MAPE (%) | 17.7045 | 5.2918 | 87.761 | 28.6955 | 4.9691 | 5.087 |
| LR | RMSE | 2.8847 | 0.1672 | 0.8917 | 19.1103 | 0.2163 | 0.6313 | MAE | 0.9538 | 0.1031 | 0.6882 | 8.1038 | 0.159 | 0.4745 | MAPE (%) | 19.5272 | 1.8677 | 85.7107 | 43.7899 | 3.6489 | 5.1051 |
| LSTM-CNN | RMSE | 1.5766 | 0.1666 | 0.7718 | 13.8563 | 0.2097 | 0.5642 | MAE | 0.5549 | 0.0989 | 0.5418 | 4.0471 | 0.1452 | 0.4054 | MAPE (%) | 12.8176 | 1.7848 | 58.9024 | 20.1201 | 3.305 | 4.2412 |
| LSTM-ST | RMSE | 2.8254 | 0.2065 | 1.1961 | 17.5173 | 0.8503 | 0.6259 | MAE | 0.8774 | 0.1446 | 0.8220 | 5.9398 | 0.6748 | 0.4702 | MAPE (%) | 17.8440 | 2.6093 | 64.5140 | 27.6214 | 18.4803 | 4.9916 |
| SARIMA | RMSE | 3.2309 | 0.2162 | 1.1533 | 18.1823 | 0.2649 | 0.8145 | MAE | 1.3102 | 0.1183 | 0.7627 | 6.0104 | 0.1846 | 0.5878 | MAPE (%) | 27.2927 | 2.1366 | 62.2503 | 29.4217 | 4.4407 | 7.7525 |
| XGBoost | RMSE | 2.8687 | 0.1823 | 0.8844 | 17.6053 | 0.2217 | 0.6523 | MAE | 0.8792 | 0.1082 | 0.6361 | 5.0568 | 0.1633 | 0.4885 | MAPE (%) | 17.3071 | 1.9531 | 70.682 | 20.2381 | 3.8021 | 5.0538 |
|
|