Research Article

Forecasting Passenger Flow Distribution on Holidays for Urban Rail Transit Based on Destination Choice Behavior Analysis

Table 5

Model estimation results.

Characteristic variableCase1: the New Year’s DayCase2: the National Day
One-way ticketPublic transport cardOne-way ticketPublic transport card
t-valuet-valuet-valuet-value

Destination attraction ()0.30137.9890.08426.8180.29038.7910.21128.646
Land matching degree ()0.3113.6410.4246.8020.2572.3670.5328.481
Collinear variable ()0.53318.1900.54918.7590.49317.1790.55318.812
Scale variable ()0.63829.1060.53323.8350.62929.5190.51723.696
Travel time ()−0.815−18.286−1.172−25.162−0.508−11.884−1.094−23.556
Transfer time ()−5.507−18.324−6.449−20.833−5.975−20.316−6.766−21.519
Scenic variables ()0.0843.9710.0923.350
Model summaryObservations17954183141753417747
−32640.37−33441.36−31654.83−32615.35
−41340.61−42169.54−40373.53−40863.98
Adjusted 0.2100.2070.2160.202