Research Article

Freight Demand Distribution in a Suburban Area: Calibration of an Acquisition Model with Floating Car Data

Table 1

Classification of a selection of papers using big data to estimate freight demand models.

ReferenceModel structureReference unitDistribution channelAggregation levelModel assumptionsObserved dataStudy areaCalibrated parameters

Russo and Comi [11]PVRA/DB/DTU (Giarre, Italy)Y
Ehmke et al. [12]PVRADBU (Stuttgart, Germany)Y
Nuzzolo and Comi [13]PQ/VRADBU (Rome, Italy)Y
Sharman [14]PVRADBR (Canada)Y
Ben-Akiva et al. [15]PVRADB/TR (USA)N
Hadavi et al. [16]PVR/EADBU (Brussels, Belgium)N
Croce et al. [17]PQ/VRA/DDB/TU (Locride, Italy)Y
Diana et al. [18]PVRADB/TU (Turin, Italy)N
Nuzzolo et al. [19]PVRADBR (Veneto, Italy)N
Comi and Polimeni [3]PVRADBR (Veneto, Italy)Y
Musolino et al. [20]PVRDBBU (Locride, Italy)Y
Wang et al. [21]PQEDDBE-commerce platformY
Russo and Comi [10]pVR/EADBRome (Italy)N

P, partial choice. V, vehicles; Q, quantity. R, one or more retailers; E, e-commerce. A, aggregate; D, disaggregate. B, behavioural; D, descriptive. T, traditional survey; B, big data. U, urban/suburban; R: regional. Y, presence of calibrated parameters; N, no calibrated parameters