Research Article

A Deep Learning Based Traffic State Estimation Method for Mixed Traffic Flow Environment

Table 1

Error comparison of different models in three cases (the results with the best performance are highlighted).

CaseAlgorithmRMSEMREMAE

Case 1KF2.320310.154741.81752
ACC-KF2.279860.139541.74709
LSTM1.802950.091151.29157
ACC-LSTM1.626930.069251.17177
P-LSTM1.715190.078961.16926
ACC-P-LSTM1.541420.064521.05299

Case 2KF2.201170.107111.59424
ACC-KF2.177100.106601.58011
LSTM1.265770.062950.99065
ACC-LSTM1.254470.061220.98373
P-LSTM1.247820.060190.95079
ACC-P-LSTM1.247410.060220.96165

Case 3KF2.640870.164171.92558
ACC-KF2.525610.158631.78602
LSTM1.931800.096191.36391
ACC-LSTM1.928610.096181.34253
P-LSTM1.915430.094221.35214
ACC-P-LSTM1.918700.096611.33502

Note: KF = Kalman Filtering; ACC-KF = Kalman Filtering using KNN filling with fusion acceleration; LSTM = Long Short-Term Memory; ACC-LSTM = LSTM model using KNN filling with fusion acceleration; P-LSTM = LSTM model using penetration rate estimation; ACC-P-LSTM = LSTM model using KNN filling with fusion acceleration and penetration rate estimation; RMSE = Root Mean Square Error; MRE = Mean Relative Error; and MAE = Mean Absolute Error.