Research Article
Research on the Prediction of the Operational Risk Field of Intelligent Vehicles Based on Dual Multiline LiDAR
Table 2
The historical time-series data of the target vehicle state input into the Attention-BiLSTM model.
| | ID1 (L = 8.5 m, = 3.0 m) | ID2 (L = 5.5 m, = 2.4 m) | ID3 (L = 4.5 m, = 2.0 m) | ID4 (L = 5.0 m, = 2.2 m) | X (m) | Y (m) | (m/s) | X (m) | Y (m) | (m/s) | X (m) | Y (m) | (m/s) | X (m) | Y (m) | (m/s) |
| T = −4 s | 6.85 | −14.95 | 6.8 | 3.36 | 2.26 | 12.0 | 8.20 | −9.67 | 2.5 | −15.57 | 13.66 | 7.4 | T = −3 s | 7.14 | −15.29 | 6.8 | 3.85 | 1.59 | 12.1 | 9.13 | −10.65 | 2.8 | −15.28 | 13.27 | 7.5 | T = −2 s | 7.03 | −15.34 | 6.8 | 4.06 | 1.36 | 11.8 | 8.48 | −9.94 | 2.3 | −15.23 | 13.02 | 7.4 | T = −1 s | 7.28 | −15.62 | 7 | 4.26 | 1.16 | 11.6 | 8.35 | −10.02 | 1.8 | −15.03 | 12.90 | 7.6 | T = 0 s | 7.32 | −15.68 | 6.9 | 4.45 | 0.90 | 11.5 | 8.54 | −10.15 | 1.4 | −14.96 | 12.64 | 8 |
|
|