Research Article

ST-AGRNN: A Spatio-Temporal Attention-Gated Recurrent Neural Network for Traffic State Forecasting

Table 1

Traffic speed prediction performance under different benchmark methods in the PeMSD4 and PeMSD8 datasets (bold is the best; underline is the second best.).

ModelPeMSD4 (MAE/RMSE/MAPE(%))
15 min30 min60 min
HA2.54/4.96/5.562.54/4.96/5.562.54/4.96/5.56
ARIMA(2003)2.51/5.72/5.322.75/6.34/5.693.21/7.36/6.56
DCRNN(2018)1.35/2.94/2.681.77/4.06/3.712.26/5.28/5.10
STGCN(2018)1.47/3.01/2.921.93/4.21/3.982.55/5.65/5.39
ASTGCN(2019)2.12/3.96/4.162.42/4.59/4.802.73/5.21/5.46
GWN(2019)1.30/2.68/2.671.70/3.82/3.732.03/4.65/4.60
LSGCN(2020)1.45/2.93/2.901.82/3.92/3.842.22/4.83/4.85
USTGCN(2021)1.40/2.69/2.81/1.64/3.19/3.232.03/4.25/4.32
ST-AGRNN1.19/2.36/2.171.45/2.98/2.691.76/3.63/3.24

ModelPeMSD8 (MAE/RMSE/MAPE(%))
15 min30 min60 min
HA1.98/4.11/3.941.98/4.11/3.941.98/4.11/3.94
ARIMA(2003)1.90/4.87/5.112.12/5.24/5.212.79/6.22/5.62
DCRNN(2018)1.17/2.59/2.321.49/3.56/3.211.87/4.50/4.28
STGCN(2018)1.19/2.62/2.341.59/3.61/3.242.25/4.68/4.54
ASTGCN(2019)1.49/3.18/3.161.67/3.69/3.591.89/4.13/4.22
LSGCN(2020)1.16/2.45/2.241.46/3.28/3.021.81/4.11/3.89
USTGCN(2021)1.14/2.15/2.071.25/2.58/2.351.70/3.27/3.22
ST-AGRNN1.015/2.07/1.821.24/2.63/2.211.53/3.33/2.71