Journal of Advanced Transportation / 2022 / Article / Tab 1 / Research Article
ST-AGRNN: A Spatio-Temporal Attention-Gated Recurrent Neural Network for Traffic State Forecasting Table 1 Traffic speed prediction performance under different benchmark methods in the PeMSD4 and PeMSD8 datasets (bold is the best; underline is the second best.).
Model PeMSD4 (MAE/RMSE/MAPE(%)) 15 min 30 min 60 min HA 2.54/4.96/5.56 2.54/4.96/5.56 2.54/4.96/5.56 ARIMA(2003) 2.51/5.72/5.32 2.75/6.34/5.69 3.21/7.36/6.56 DCRNN(2018) 1.35/2.94/2.68 1.77/4.06/3.71 2.26/5.28/5.10 STGCN(2018) 1.47/3.01/2.92 1.93/4.21/3.98 2.55/5.65/5.39 ASTGCN(2019) 2.12/3.96/4.16 2.42/4.59/4.80 2.73/5.21/5.46 GWN(2019) 1.30/2.68/2.67 1.70/3.82/3.73 2.03/4.65/4.60 LSGCN(2020) 1.45/2.93/2.90 1.82/3.92/3.84 2.22/4.83/4.85 USTGCN(2021) 1.40/2.69/2.81/ 1.64 /3.19 /3.23 2.03 /4.25 /4.32 ST-AGRNN 1.19/2.36/2.17 1.45/2.98/2.69 1.76/3.63/3.24 Model PeMSD8 (MAE/RMSE/MAPE(%)) 15 min 30 min 60 min HA 1.98/4.11/3.94 1.98/4.11/3.94 1.98/4.11/3.94 ARIMA(2003) 1.90/4.87/5.11 2.12/5.24/5.21 2.79/6.22/5.62 DCRNN(2018) 1.17/2.59/2.32 1.49/3.56/3.21 1.87/4.50/4.28 STGCN(2018) 1.19/2.62/2.34 1.59/3.61/3.24 2.25/4.68/4.54 ASTGCN(2019) 1.49/3.18/3.16 1.67/3.69/3.59 1.89/4.13/4.22 LSGCN(2020) 1.16/2.45/2.24 1.46/3.28/3.02 1.81/4.11/3.89 USTGCN(2021) 1.14/2.15/2.07 1.25 /2.58 /2.35 1.70 /3.27 /3.22 ST-AGRNN 1.015/2.07/1.82 1.24/ 2.63 /2.21 1.53/ 3.33 /2.71